Ionic aluminium concentrations exceed thresholds for

 aquatic health in Nova Scotian riversEdmund A. Halfyard ${ }^{3}$
${ }^{1}$ Sterling Hydrology Research Group, Department of Earth Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
${ }^{2}$ Coastal Action, Lunenburg, Nova Scotia, Canada
${ }^{3}$ Nova Scotia Salmon Association, Chester, Nova Scotia, Canada

Correspondence to: Shannon Sterling (shannon.sterling@dal.ca)

Abstract

Cationic aluminium species are toxic to terrestrial and aquatic life. Despite decades of acid emission reductions, accumulating evidence shows that freshwater acidification recovery is delayed in locations such as Nova Scotia, Canada. Further, spatial and temporal patterns of labile cationic forms of aluminium $\left(\mathrm{Al}_{\mathrm{i}}\right)$ remain poorly understood. Here we increase our understanding of Al_{i} spatial and temporal patterns by measuring Al_{i} concentrations in ten streams in acid-sensitive areas of Nova Scotia over a four-year time period. We observe widespread and frequent occurrences of Al_{i} concentrations that exceed toxic thresholds ($>15 \mu \mathrm{~g} \mathrm{~L}^{-1}$). Al_{i} patterns appear to be driven by known Al_{i} drivers - pH , dissolved organic carbon, dissolved aluminium, and calcium - but the dominant driver and temporal patterns vary by catchment. Our results demonstrate that elevated Al_{i} remains a threat to aquatic ecosystems. For example, our observed Al_{i} concentrations are potentially harmful to the biologically, economically, and culturally significant Atlantic salmon (Salmo salar).

1 Introduction

Freshwater acidification caused elevated concentrations of cationic aluminium $\left(\mathrm{Al}_{\mathrm{i}}\right)$ at the end of the last century that led to increased freshwater and marine mortality and, ultimately, the extirpation of native Atlantic salmon (Salmo salar) populations in many rivers (Rosseland et al., 1990), for example in Scandinavia (Henriksen et al., 1984, Hesthagen and Hansen, 1991), the eastern USA (Monette and McCormick, 2008, Parrish et al., 1998), and Nova Scotia, Canada (Watt, 1987). Following reductions in anthropogenic sulfur emissions in North America and Europe since the 1990s, many rivers showed steady improvements in annual average stream chemistry (Evans et al., 2001, Monteith et al., 2014,

Skjelkvåle et al., 2005, Stoddard et al., 1999, Warby et al., 2005), including reduced concentrations of Al_{i} in the USA (Baldigo and Lawrence, 2000, Buchanan et al., 2017, Burns et al., 2006) and Europe (Beneš et al., 2017, Davies et al., 2005, Monteith et al., 2014). However, recent evidence highlights delayed recovery from acidification in some areas (Houle et al., 2006, Warby et al., 2009, Watmough et al., 2016), including SWNS (Clair et al., 2011), raising concerns about elevated Al_{i} concentrations.

Aluminium (Al) toxicity can be caused by both precipitated and dissolved forms in circumneutral waters (Gensemer et al., 2018); however, the cationic species of Al , such as Al^{3+}, $\mathrm{Al}(\mathrm{OH})_{2}{ }^{1+}$, and $\mathrm{Al}(\mathrm{OH})^{2+}$ are considered to be the most labile and toxic to salmonids as they bind to the negatively charged fish gills causing morbidity and mortality through suffocation (Exley et al., 1991), reducing nutrient intake at gill sites, and altering blood plasma levels (Nilsen et al., 2010). Further, the effects of sub-lethal exposure to freshwater Al elicits osmoregulatory impairment (Monette and McCormick, 2008, Regish et al., 2018) which reduces survival in the hypertonic marine environment (McCormick et al., 2009, Staurnes et al., 1996). Elevated concentrations of Al_{i} are also toxic to other freshwater and terrestrial organisms (Boudot et al., 1994, Wauer and Teien, 2010), such as frogs and aquatic birds (Lacoul et al., 2011).

Al speciation varies with pH (Helliweli et al., 1983, Lydersen, 1990), where positive Al species dominate over neutral and negative species below pH 6.3 at $2^{\circ} \mathrm{C}$ and below pH 5.7 at $25^{\circ} \mathrm{C}$ (Lydersen, 1990), with the most toxic Al species, $\mathrm{Al}(\mathrm{OH})_{2}{ }^{+1}$ (Helliweli et al., 1983) dominating Al speciation between $\mathrm{pH} 5.0-6.0$ at $25^{\circ} \mathrm{C}$, and 5.5-6.5 at $2{ }^{\circ} \mathrm{C}$ (Lydersen, 1990). Thus, the toxicity of Al increases with increased pH up to the formation of gibbsite (Schofield and Trojnar, 1980). Additionally, colder waters will have a higher proportion of toxic species at higher pH values than warmer waters (Driscoll and Schecher, 1990). The bioavailability of Al is reduced by the presence of calcium (Ca) (Brown, 1983), which can occupy the negatively charged gill sites, and dissolved organic carbon (DOC), which
occludes $A l_{i}$ through the formation of organo- Al complexes $\left(\mathrm{Al}_{\mathrm{o}}\right)$ that are nontoxic to fish (Erlandsson et al., 2010).

Despite being the most common metal on Earth's crust, Al is usually immobilized in clays or hydroxide minerals in soils. Rates of Al release into soil water from soil minerals increase with three drivers: 1) low soil $\mathrm{pH}, 2$) low soil base saturation, and 3) high soil DOC concentrations. Lowered pH increases Al solubility and observations confirm that Al_{i} concentrations are negatively correlated with pH (Campbell et al., 1992, Kopáček et al., 2006). Low levels of base saturation can cause charge imbalances resulting in the release of Al into soil waters from clay particles, and later into drainage waters (Fernandez et al., 2003) and chronic acidification thus shifts available exchangeable cations in the soil from Ca and magnesium (Mg) towards Al (Schlesinger and Bernhardt, 2013, Walker et al., 1990). Higher concentrations of DOC in soil water increase the release of Al through two mechanisms: 1) as an organic acid, DOC decreases soil pH , thus increasing Al release (Lawrence et al., 2013), and 2) by forming organic complexes with Al_{i} it maintains a negative Al concentration gradient from the cation exchange sites to the soil water, increasing rates of Al release (Edzwald and Van Benschoten, 1990, Jansen et al., 2003). Field studies confirm Al concentrations to be positively correlated with DOC (Campbell et al., 1992, Kopáček et al., 2006) although at higher concentrations of DOC, Al may be organic-complexed and less toxic to aquatic organisms (Witters et al., 1990).

Once mobilized in soil waters, export of Al_{i} to drainage waters requires anions to maintain charge balance. Storm events have been shown to increase Al_{i} export due to added anions (e.g., Cl^{-}, $\left.\mathrm{SO}_{4}{ }^{2-}, \mathrm{F}^{-}\right)$, and from the movement of flow paths to shallower soil horizons where more Al may be available for transport. For example, from 1983 to 1984, Al concentrations for the River Severn in Wales increased ten-fold during the stormflow peak compared to the baseflow (Neal et al., 1986).

However, the association of increased Al_{i} concentrations with storm flow is not consistent in the literature (DeWalle et al., 1995, McKnight and Bencala, 1988).

Annual patterns of Al_{i} typically show a peak, but the timing of the peak varies. In some areas, Al_{i} concentrations peak in the spring and winter, correlated with flow peaks, such as in Quebec (Campbell et al., 1992), Russia (Rodushkin et al., 1995), and along the Czech-German border (Kopacek et al., 2000, Kopáček et al., 2006). In other areas, Al concentrations were found to be higher in the summer such as in Virginia, USA (Cozzarelli et al., 1987). If the timing of peak Al_{i} concentrations coincides with sensitive stages of aquatic organisms, the potential for large biological impacts is high.

Our understanding of spatial and temporal trends of Al_{i} is limited by the relative paucity of samples: Al_{i} is not measured as part of standard analyses. Our understanding is also limited by the difficulty in comparing the wide variety of methods for estimating Al_{i}; different definitions, often operational, of toxic Al include inorganic Al , inorganic monomeric Al , labile $\mathrm{Al}, \mathrm{Al}^{3+}$, and cationic Al (Table A1). Definitions for both inorganic monomeric Al and cationic Al include all positively charged species of Al.

Acid sensitive areas of NS, here abbreviated as NS_{A} (see Clair et al., 2007), with once-famous wild Atlantic salmon populations, were heavily impacted by acid deposition at the end of the last century, which originated from coal burning in central Canada and Northeastern USA (Hindar, 2001, Summers and Whelpdale, 1976). NS_{A} catchments are particularly sensitive to acid deposition due to base cation-poor and slowly weathering bedrock that generates thin soils with low acid neutralizing capacity (ANC), extensive wetlands, and episodic sea salt inputs (Clair et al., 2011, Freedman and Clair, 1987, Watt et al., 2000, Whitfield et al., 2006). A 2006 fall survey found that Al_{i} concentrations in NS exceeded the $15 \mu \mathrm{~g} \mathrm{~L}^{-1}$ toxic threshold suggested by the European Inland Fisheries Advisory Council (EIFAC) for aquatic health in seven of 42 rivers surveyed (Dennis and Clair, 2012). However, apart
from this study, little is known about the regional extent and patterns of Al_{i}. Here, we aim to increase our understanding of current Al_{i} spatial and temporal patterns in relation to toxic thresholds, and to identify potential drivers by conducting a four-year survey of Al_{i} concentrations in ten streams across acid-sensitive areas of NS, Canada.

2 Materials and methods

2.1 Study area

We surveyed Al_{i} concentrations at ten study catchments in NS_{A}, ranging from headwater to higher-order systems: Mersey River (MR), Moose Pit Brook (MPB), Pine Marten Brook (PMB), Maria Brook (MB), Brandon Lake Brook (BLB), above the West River lime doser (ALD), Upper Killag River (UKR), Little River (LR), Keef Brook (KB), and Colwell Creek (CC) (Table 1, Fig. 1 and 2). Our study catchments are predominantly forested, draining slow-weathering, base-cation poor bedrock, producing soils with low ANC (Langan and Wilson, 1992, Tipping, 1989). The catchments also have relatively high DOC concentrations (Ginn et al., 2007) associated with the abundant wetlands in the region (Clair et al., 2008, Gorham et al., 1986, Kerekes et al., 1986).

2.2 Data collection and analysis

We measured Al_{i} concentrations at three of the ten catchments from April 2015 to September 2017 (MR, MPB, PMB), on a weekly to monthly frequency during the snow free season (approximately April to November, Table A2). In 2016-2018, seven sites were added and sampled every two weeks to monthly during the snow-free season.
Al_{i} sampling events comprise grab samples for lab analysis and in situ measurements of pH and water temperature $\left(\mathrm{T}_{\mathrm{w}}\right)$. We calculate Al_{i} as the difference between dissolved $\mathrm{Al}\left(\mathrm{Al}_{\mathrm{d}}\right)$ and Al_{o} following Dennis and Clair (2012) and Poléo (1995) (Eq. 1), separating the species in the field to reduce errors caused by changes in temperature and pH in transport from field to lab.

$$
\begin{equation*}
A l_{i}=A l_{d}-A l_{0} \tag{1}
\end{equation*}
$$

Al_{d} is measured as the Al concentration of a filtered sample and Al_{o} is measured as the eluate from passing filtered water through a 3 cm negatively charged cation exchange column (Bond Elut Jr. Strong Cation Exchange Column). Samples were passed through the cation exchange column at a rate of approximately 30 to 60 drops per minute. From this method, Al_{o} is operationally defined as the nonlabile, organically-complexed metals and colloids, and Al_{i} is defined as the positive ionic species of Al (e.g., $\mathrm{Al}^{3+}, \mathrm{Al}(\mathrm{OH})^{2+}$, and $\mathrm{Al}(\mathrm{OH})_{2}{ }^{+}$).

Stream chemistry samples (50 ml) were collected using sterilized polyethylene syringes into sterilized polyethylene bottles. Samples for sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ analysis were not filtered. Trace metal samples were filtered $(0.45 \mu \mathrm{~m})$ and preserved with nitric acid $\left(\mathrm{HNO}_{3}\right)$. Samples for DOC analysis were filtered $(0.45 \mu \mathrm{~m})$ and transported in amber glass bottles containing sulfuric acid preservative $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ to prevent denaturation. All samples were cooled to $7^{\circ} \mathrm{C}$ during transport to the laboratories. Samples were delivered to the laboratories within 48 hours of collection, where they were further cooled to \leq $4^{\circ} \mathrm{C}$ prior to analysis (Appendix D).

We examined correlations between Al_{i} and water chemistry parameters: $\mathrm{Al}_{\mathrm{d}}, \mathrm{Ca}, \mathrm{DOC}, \mathrm{pH}$, $\mathrm{SO}_{4}{ }^{2-}, \mathrm{T}_{\mathrm{w}}$, fluoride (F^{-}), nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$, and runoff (where data are available). Correlations were analysed within and across sites. For the purposes of this study, we use the toxic threshold of Al_{i} at $15 \mathrm{ug} \mathrm{L}^{-1}$, as the majority of our pH observations were greater than or equal to 5.0 (Table A2, Appendix D3).

3 Results and discussion

3.1 Patterns of $\mathrm{Al}_{\mathbf{i}}$

Al_{i} concentrations exceed toxic levels $\left(15 \mathrm{ug} \mathrm{L}^{-1}\right)$ at all sites during the study period (Table A2). Sites in the eastern part of the study area have the highest proportion of samples exceeding threshold levels, including one site with 100% of samples in exceedance (Fig. 1). Mean Al_{i} concentrations across all sites range from 13-60 ug L- L^{-1} (Table 1), with the highest mean concentrations also occurring in the eastern part of the study area (Fig. 2). Al_{i} concentrations exceed $100 \mathrm{ug} \mathrm{L}^{-1}$ (approximately seven times the threshold) at three sites (Table A2). In the sites with the longest and most frequent data collection (MR and MPB), Al_{i} concentrations exceed the toxic threshold in consecutive samples for months at a time, particularly in the late summer (Fig. B1). Our Al_{i} concentrations are consistent with the 6.9-230 ug L^{-1} range of Al_{i} concentrations measured across NS by Dennis and Clair (2012) and are higher than concentrations measured in Norway from 1987-2010 (5-30 ug L-1) (Hesthagen et al., 2016).

The percent of Al not complexed by $\mathrm{DOC}\left(\% \mathrm{Al}_{\mathrm{i}} / \mathrm{Al}_{d}\right)$ ranges from a minimum of 0.6% to a maximum of 50%, with a median value of 10.7%, across all sites. These findings are similar to those found NS by Dennis and Clair (2012) of the proportion of Al_{i} in total aluminum $\left(\mathrm{Al}_{\mathrm{t}}\right)(\mathrm{min} .=4 \%$, max. $=70.1 \%$, med. $=12.4 \%$), and less than those found by Lacroix (1989) (over $\left.90 \% \mathrm{Al}_{\mathrm{o}} / \mathrm{Al}_{\mathrm{d}}\right) . \mathrm{T}_{\mathrm{w}}$ and pH have a significant positive correlation with $\mathrm{Al}_{\mathrm{i}} / \mathrm{Al}_{\mathrm{d}}$ (Table A3), consistent with an earlier observation that Al toxicity increases with pH (Schofield and Trojnar, 1980). However, even when the percentage of $\mathrm{Al}_{\mathrm{i}} / \mathrm{Al}_{\mathrm{d}}$ is low, Al_{i} concentrations remain well above thresholds for toxicity (Fig. B4-B13). Previous studies show $\mathrm{Al}_{\mathrm{i}} / \mathrm{Al}_{\mathrm{d}}$ is low during baseflow (Bailey et al., 1995, Murdoch and Stoddard, 1992, Schofield et al., 1985), similar to our findings (Figs. B4-B13); more consistent year-round sampling is needed to obtain a better picture of seasonal patterns in Al speciation in NS_{A}.

3.2 Potential Al_{i} drivers

$A l_{d}$ is significantly $(\alpha=0.05)$ and positively correlated with $A l_{i}$ in seven of the ten study sites (ALD, KB, LR, MB, MPB, MR, PMB) (Fig. 3, Table A4), despite the high concentrations of DOC. Al_{i} is also significantly and positively correlated with DOC in four sites (ALD, KB, MPB, MR) (Fig. 3, Table A4), consistent with other studies (Campbell et al., 1992, Kopáček et al., 2006). The positive correlation between DOC and Al_{i} concentrations may suggest that the ability of DOC to mobilize Al_{d} in soils is stronger than its ability to occlude Al_{i} in streamwaters.

Ca is significantly and positively correlated with Al_{i} at two sites (MPB, MR) (Fig. 3, Table A4). The positive relationship between Ca and Al_{i} is the opposite of expectations. We hypothesize that this is due to the two study sites having very low Ca concentrations (mean concentrations below $1 \mathrm{mg}^{-1}$), below which soil water Ca concentrations are too low to retard Al release. T_{w} is also significantly positively correlated with Al_{i} at two sites (MR, MPB) (Fig. 3, Table A4), likely reflective of the temperature-related drivers of Al concentration and speciation. Runoff is significantly and negatively correlated with Al_{i} at one site MPB (Fig. 3, Table A4). Runoff data are available for only two of the study sites (MR, MPB) and so more runoff data are needed to improve our understanding of the relation between runoff and Al_{i} in NS_{A}.

We did not observe the negative association between pH and Al_{i} observed in previous studies (Campbell et al., 1992, Kopáček et al., 2006). pH is negatively correlated with Al_{i} in four out of ten sites, but none of these relationships are statistically significant (Fig. 3, Table A4). We did observe a statistically significant positive relationship between pH and $\mathrm{Al}_{\mathrm{i}} / \mathrm{Al}_{\mathrm{d}}$; thus it seems that pH may play a more important role in determining the proportion of different Al species rather than the absolute value of Al_{i} present in streamwaters.
F^{-}has also been found to be a complexing agent that affects the speciation of Al at low pH levels and relatively high concentrations of $\mathrm{F}^{-}\left(>1 \mathrm{mg} \mathrm{L}^{-1}\right)$ (Berger et al., 2015). The concentrations of F^{-}at the study sites are mostly below this threshold (mean across all sites $=0.045 \mathrm{mg} \mathrm{L}^{-1}$); however, there is still a significant positive effect of F^{-}on Al_{i} concentrations across at two sites (KB, MPB) (Fig. 3, Table A4). $\mathrm{NO}_{3}{ }^{-}$and $\mathrm{SO}_{4}{ }^{2-}$ are also potential complexing ligands of Al ; however, we did not observe any correlation between Al_{i} and either of these parameters, except for a significant negative correlation between $\mathrm{SO}_{4}{ }^{2-}$ and Al_{i} at MB .

The highest concentrations of Al_{i} observed (> $100 \mathrm{ug} \mathrm{L} \mathrm{L}^{-1}$) often occurred in early summer (late June or early July in 2016-2018) when $\mathrm{Al}_{\mathrm{d}}, \mathrm{Ca}$, and DOC concentrations had not yet reached their annual peak (Table A2). The spring/summer extreme events occurred among the first exceptionally warm days (>21 ${ }^{\circ} \mathrm{C}$) of the year, in dry conditions, and when the proportion of $A l_{0} / \mathrm{Al}_{\mathrm{d}}$ was low (lowering to approximately 60-70\% from higher levels of around 80-90\%) (Figs. B4-B13). pH was not abnormally low during these events (ranging from 4.8 to 6.13), Ca concentrations were low (less than or equal to $800 \mu \mathrm{~g} \mathrm{~L}^{-1}$) and DOC concentrations ranged from $15-21 \mathrm{mg} \mathrm{L}^{-1}$. The observed peak in Al_{i} concentrations during times of lower discharge contrasts with studies that found higher Al_{i} concentrations during higher flow (Campbell et al., 1992, Kopacek et al., 2000, Neal et al., 1986, Rodushkin et al., 1995). Further research is required to test hypotheses on why high Al_{i} coincides with high DOC and low flow periods.

3.3 Possible seasonal groupings of Al_{i} in NS_{A}

In the two sites with the most samples, MPB and MR, groupings of data are visible that are temporally contiguous, potentially indicating seasonally-dependent Al_{i} behavior (Fig. 4). This is supported by stronger linear correlations $\left(\mathrm{r}^{2}\right)$ among variables when grouped by "season" (Table 2); for
example, for the correlation between pH and Al_{i} at MR, r^{2} improves from 0.02 for year-round data (Fig. B17) to up to 0.78 in season 1 (Fig. 4). The transition dates between the seasons are similar for the two catchments, but not the same (Table A2), and vary by year. Here we propose initial characterization of the potential "seasons"; more research is needed to test these hypotheses on seasonal divisions and their drivers using larger datasets and Generalized Linear Mixed Model analysis to test for statistical significance among the potential seasonal groupings.

Season 1 (approximately April/May) is coincident with snow-melt runoff and is characterized by relatively low concentrations of $\mathrm{Al}_{\mathrm{i}}\left(2-46 \mathrm{ug} \mathrm{L}^{-1}\right)$, low $\mathrm{pH}(4.5-5.3)$, and lower concentrations of most constituents, including DOC, and cold temperatures $\left(4^{\circ} \mathrm{C}\right)$. During this season, Al_{i} is strongly coupled with $\mathrm{pH}, \mathrm{DOC}, \mathrm{Al}_{\mathrm{d}}$ and Ca in MR , but less so in MPB. A possible explanation is that season 1 is dominated by snowmelt hydrology in which cation exchange between soil and discharge occurs less efficiently, which has been attributed to ice and frozen soil potentially limiting water contact time with soil (Christophersen et al., 1990). The onset of season 2 (approximately late June) is characterized by increasing Al_{i} concentrations, temperature, and $\mathrm{DOC} . \mathrm{Al}_{\mathrm{i}}$ and pH values are higher in this season and Al_{i} becomes strongly negatively correlated with pH as pH increases to the lower threshold for gibbsite. In MR in season $2 \mathrm{Al}_{\mathrm{i}}$ has a strong positive relationship with DOC . The highest observed Al_{i} concentrations of the year occur in season 2 (Fig. 4). Al_{i} relations are weak in MR in season 3 (approximately September through March), likely due to the lower frequency of measurements during the winter. Season 3 in MR has the highest concentrations of dissolved constituents $\left(\mathrm{Al}_{\mathrm{d}}, \mathrm{Ca}\right.$, and DOC$)$, whereas in MPB only Ca has the highest concentrations.

3.4 Ecological implications

While the summer peak in Al_{i} that we observed in NS_{A} does not coincide with the smoltification period, when salmon transition from parr to smolt and are highly sensitive to Al exposure (Kroglund et al., 2007, Monette and McCormick, 2008, Nilsen et al., 2013), continued exposure throughout the year may still negatively affect salmon populations, as accumulation of Al_{i} on gills reduces salmon marine and freshwater survival (Kroglund et al., 2007). Further, Al_{i} concentrations as low as $20 \mathrm{ug} \mathrm{L}^{-1}$ may impair marine survival without reducing freshwater survival (Kroglund and Staurnes, 1999, Staurnes et al., 1996), contributing to the observation that marine threats are driving population declines of Atlantic Salmon (e.g. Gibson et al., 2011). In addition, as the higher Al_{i} concentrations appear to be driven - at least in part - by lower flow in the summer months, increases in the length and severity of droughts and heat-waves due to climate change may further increase Al_{i} concentrations and exacerbate Al_{i} effects on aquatic life. Increases in Al have already been observed across areas previously affected by freshwater acidification (Sterling et al., in prep.).

For example, because many peak Al_{i} concentrations occur on the first exceptionally warm day in late spring, the peaks may be exacerbated with springtime warming associated with climate change. As warm days begin to occur earlier in the season, there may be increasing chance of the peak Al_{i} concentrations overlapping with smoltification season and emergence of salmon fry; both considered the most vulnerable life stages of Atlantic salmon (e.g., Farmer, 2000), although the phenology of the smolt run is expected to similarly advance earlier in the year.

4 Conclusions

Our study reveals that widespread and persistent toxic concentrations of Al_{i} in NS_{A} freshwaters pose a risk to aquatic, and potentially terrestrial, life. Previously, high DOC concentrations were presumed to protect aquatic life against Al_{i}; our study shows that this presumption does not hold.

Our results suggest that the recent 88 to 99% population decline of the Southern Uplands Atlantic salmon population in NS_{A} (Gibson et al., 2011) may be partially attributable to Al_{i}, in contrast to earlier studies which downplayed the role of Al_{i} in Atlantic salmon mortality (Bowlby et al., 2013, Lacroix and Townsend, 1987). These high Al_{i} concentrations in NS_{A} highlight the need to increase our understanding of the influence of Al_{i} on both terrestrial and aquatic ecosystems, and its implications for biodiversity.

The catchments with the highest Al_{i} levels had particularly low Ca levels, raising concerns as Ca is protective against Al_{i} toxicity, and highlighting coincident threats of Ca depletion and elevated Al. Recent work has identified globally widespread low levels and declines in Ca (Weyhenmeyer et al., 2019), raising the question of what other regions may also have Al_{i} levels exceeding toxic thresholds.

The serious potential consequences Al_{i} highlight the importance for actions to further reduce acid emissions and deposition, as critical loads are still exceeded across the province (Keys, 2015), and to adapt forest management practices to avoid base cation removal and depletion. Addition of base cations through liming and enhanced weathering of soils and freshwaters may accelerate recovery from acidification.

Data availability

Readers can access our data from HydroShare supported by CUASHI, a FAIR-aligned data repository (https://www.re3data.org/).

Author contribution

SS conceived the idea and led the writing of the MS. SM led the field data collection. SM and TAC designed the protocol for Al_{i} sampling, assisted with data analysis and helped with the writing. LR performed spatial and statistical analysis, produced figures, and assisted with sample collection and draft writing. KH assisted with data analysis, figure production and editing and contributed to the draft. TAC provided information on analytical and field sampling methods, and selection of sampling sites. EAH contributed field samples, assisted with data analysis and contributions to the manuscript.

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgements

The Atlantic Salmon Conservation Foundation, Atlantic Canada Opportunities Agency, the Nova Scotia Salmon Association, and Fisheries and Oceans Canada provided financial support for the field data collection and the laboratory analyses. Marley Geddes, Siobhan Takla, Franz Heubach, Lorena Heubach, Emily Bibeau and Ryan Currie provided field assistance.

References

Bailey, S. W., Driscoll, C. T. and Hornbeck, J. W.: Acid-base chemistry and aluminum transport in an acidic watershed and pond in New Hampshire, Biogeochemistry, 28, 69-91, 1995.

Baldigo, B. P. and Lawrence, G. B.: Composition of fish communities in relation to stream acidification and habitat in the Neversink River, New York, Trans. Am. Fish. Soc., 129, 60-76, 2000.

Beneš, F., Horecký, J., Senoo, T., Kamasová, L., Lamačová, A., Tátosová, J., Hardekopf, D. W. and Stuchlík, E.: Evidence for responses in water chemistry and macroinvertebrates in a strongly acidified mountain stream, Biologia, 72, 1049-1058, 2017.

Berger, T., Mathurin, F. A., Gustafsson, J. P., Peltola, P. and Åström, M. E.: The impact of fluoride on Al abundance and speciation in boreal streams, Chem. Geol., 409, 118-124, 2015.

Boudot, J. P., Becquer, T., Merlet, D. and Rouiller, J.: Aluminium toxicity in declining forests: a general overview with a seasonal assessment in a silver fir forest in the Vosges mountains (France), in: Annales des sciences forestières, 1994.

Bowlby, H. D., Horsman, T., Mitchell, S. C. and Gibson, A.: Recovery potential assessment for southern upland atlantic salmon: habitat requirements and availability, threats to populations, and feasibility of habitat restoration, DFO Canadian Science Advisory Secretariat, 2013.

Brown, D.: Effect of calcium and aluminum concentrations on the survival of brown trout (Salmo trutta) at low pH, Bull. Environ. Contam. Toxicol., 30, 582-587, 1983.

Buchanan, C., Smith, Z. and Nagel, A.: Long-Term Water Quality Trends in USEPA Region 3 (Mid-Atlantic), 2017.

Burns, D. A., McHale, M. R., Driscoll, C. T. and Roy, K. M.: Response of surface water chemistry to reduced levels of acid precipitation: comparison of trends in two regions of New York, USA, Hydrological Processes: An International Journal, 20, 1611-1627, 2006.

Campbell, P. G., Hansen, H. J., Dubreuil, B. and Nelson, W. O.: Geochemistry of Quebec north shore salmon rivers during snowmelt: organic acid pulse and aluminum mobilization, Can. J. Fish. Aquat. Sci., 49, 1938-1952, 1992.

Christophersen, N., Vogt, R. D., Neal, C., Anderson, H. A., Ferrier, R. C., Miller, J. D. and Seip, H. M.: Controlling mechanisms for stream water chemistry at the Pristine Ingabekken Site in mid-Norway: Some implications for acidification models, Water Resour. Res., 26, 59-67, 1990.

Clair, T. A., Dennis, I. F., Vet, R. and Laudon, H.: Long-term trends in catchment organic carbon and nitrogen exports from three acidified catchments in Nova Scotia, Canada, Biogeochemistry, 87, 83-97, 2008.

Clair, T. A., Dennis, I. F., Scruton, D. A. and Gilliss, M.: Freshwater acidification research in Atlantic Canada: a review of results and predictions for the future, Env. Rev., 15, 153-167, 2007.

Clair, T. A., Dennis, I. F. and Vet, R.: Water chemistry and dissolved organic carbon trends in lakes from Canada's Atlantic Provinces: no recovery from acidification measured after 25 years of lake monitoring, Can. J. Fish. Aquat. Sci., 68, 663-674, 2011.

Cozzarelli, I. M., Herman, J. S. and Parnell Jr, R. A.: The mobilization of aluminum in a natural soil system: effects of hydrologic pathways, Water Resour. Res., 23, 859-874, 1987.

Davies, J., Jenkins, A., Monteith, D. T., Evans, C. D. and Cooper, D. M.: Trends in surface water chemistry of acidified UK freshwaters, 1988-2002, Environmental Pollution, 137, 27-39, 2005.

Dennis, I. F. and Clair, T. A.: The distribution of dissolved aluminum in Atlantic salmon (Salmo salar) rivers of Atlantic Canada and its potential effect on aquatic populations, Can. J. Fish. Aquat. Sci., 69, 1174-1183, 2012.

DeWalle, D. R., Swistock, B. R. and Sharpe, W. E.: Episodic flow-duration analysis: a method of assessing toxic exposure of brook trout (Salvelinus fontinalis) to episodic increases in aluminum, Can. J. Fish. Aquat. Sci., 52, 816-827, 1995.

Driscoll, C. T. and Schecher, W. D.: The chemistry of aluminum in the environment, Environ. Geochem. Health, 12, 28-49, 1990.

Edzwald, J. K. and Van Benschoten, J. E.: Aluminum coagulation of natural organic matter, in: Chemical water and wastewater treatment, Springer, 341-359, 1990.

Erlandsson, M., Cory, N., Köhler, S. and Bishop, K.: Direct and indirect effects of increasing dissolved organic carbon levels on pH in lakes recovering from acidification, Journal of Geophysical Research: Biogeosciences, 115, 2010.

Evans, C. D., Cullen, J. M., Alewell, C., Kopácek, J., Marchetto, A., Moldan, F., Prechtel, A., Rogora, M., Veselý, J. and Wright, R.: Recovery from acidification in European surface waters, Hydrology and Earth System Sciences Discussions, 5, 283-298, 2001.

Evans, C. D. and Monteith, D. T.: Chemical trends at lakes and streams in the UK Acid Waters Monitoring Network, 1988-2000: Evidence for recent recovery at a national scale, Hydrology and Earth System Sciences Discussions, 5, 351-366, 2001.

Exley, C., Chappell, J. S. and Birchall, J. D.: A mechanism for acute aluminium toxicity in fish, J. Theor. Biol., 151, 417-428, 1991.

Farmer, G. J.: Effects of low environmental pH on Atlantic salmon (Salmo salar L.) in Nova Scotia, Department of Fisheries and Oceans Canada, 2000.

Fernandez, I. J., Rustad, L. E., Norton, S. A., Kahl, J. S. and Cosby, B. J.: Experimental acidification causes soil base-cation depletion at the Bear Brook Watershed in Maine, Soil Sci. Soc. Am. J., 67, 1909-1919, 2003.

Freedman, B. and Clair, T. A.: Ion mass balances and seasonal fluxes from four acidic brownwater streams in Nova Scotia, Can. J. Fish. Aquat. Sci., 44, 538-548, 1987.

Gensemer, R. W., Gondek, J. C., Rodriquez, P. H., Arbildua, J. J., Stubblefield, W. A., Cardwell, A. S., Santore, R. C., Ryan, A. C., Adams, W. J. and Nordheim, E.: Evaluating the effects of pH , hardness, and dissolved organic carbon on the toxicity of aluminum to freshwater aquatic organisms under circumneutral conditions, Environmental toxicology and chemistry, 37, 49-60, 2018.

EY

Gibson, A. J. F., Bowlby, H. D., Hardie, D. C. and O'Reilly, P. T.: Populations on the brink: low abundance of Southern Upland Atlantic salmon in Nova Scotia, Canada, N. Am. J. Fish. Manage., 31, 733-741, 2011.

Ginn, B. K., Cumming, B. F. and Smol, J. P.: Assessing pH changes since pre-industrial times in 51 low-alkalinity lakes in Nova Scotia, Canada, Can. J. Fish. Aquat. Sci., 64, 1043-1054, 2007.

Gorham, E., Underwood, J. K., Martini, F. B. and Ogden III, J. G.: Natural and anthropogenic causes of lake acidification in Nova Scotia, Nature, 324, 451, 1986.

Helliweli, S., Batley, G. E., Florence, T. M. and Lumsden, B. C.: Speciation and toxicity of aluminium in a model fresh water, Environ. Technol., 4, 141-144, 1983.

Henriksen, A., Skogheim, O. K. and Rosseland, B. O.: Episodic changes in pH and aluminium-speciation kill fish in a Norwegian salmon river, Vatten, 40, 255-260, 1984.

Hesthagen, T. and Hansen, L. P.: Estimates of the annual loss of Atlantic salmon, Salmo salar L., in Norway due to acidification, Aquacult. Res., 22, 85-92, 1991.

Hesthagen, T., Fiske, P. and Saksgård, R.: Recovery of young brown trout (Salmo trutta) in acidified streams: What are the critical values for acid-neutralizing capacity?, Atmos. Environ., 146, 236-244, 2016.

Hindar, A.: Recommended liming strategies for salmon rivers in Nova Scotia, Canada, NIVA, 2001.

Houle, D., Ouimet, R., Couture, S. and Gagnon, C.: Base cation reservoirs in soil control the buffering capacity of lakes in forested catchments, Can. J. Fish. Aquat. Sci., 63, 471-474, 2006.

Howells, G., Dalziel, T., Reader, J. P. and Solbe, J. F.: EIFAC water quality criteria for European freshwater fish: report on aluminium, Chem. Ecol., 4, 117-173, 1990.

Jansen, B., Nierop, K. G. and Verstraten, J. M.: Mobility of Fe (II), Fe (III) and Al in acidic forest soils mediated by dissolved organic matter: influence of solution pH and metal/organic carbon ratios, Geoderma, 113, 323-340, 2003.

Josephson, D. C., Robinson, J. M., Chiotti, J., Jirka, K. J. and Kraft, C. E.: Chemical and biological recovery from acid deposition within the Honnedaga Lake watershed, New York, USA, Environ. Monit. Assess., 186, 4391-4409, 2014.

Kerekes, J., Beauchamp, S., Tordon, R., Tremblay, C. and Pollock, T.: Organic versus anthropogenic acidity in tributaries of the Kejimkujik watersheds in western Nova Scotia, Water Air Soil Pollut., 31, 165-1793, 1986.

Keys, K.: Acid Deposition and Base Cation Depletion in Northeastern Forest Soils: a Review with Focus on Nova Scotia Conditions thesis, Dalhousie University, 2015.

Kopacek, J., Hejzlar, J. and Porcal, P.: Seasonal patterns in chemistry of tributaries to plesne and certovo lakes in the 1998 hydrological year, Silva Gabreta, 4, 105-116, 2000.

Kopáček, J., Turek, J., Hejzlar, J., Kaňa, J. and Porcal, P.: Element fluxes in watershed-lake ecosystems recovering from acidification: Čertovo Lake, the Bohemian Forest, 2001-2005, Biologia, 61, S41-S426, 2006.

Krám, P., Hruška, J., Driscoll, C. T., Johnson, C. E. and Oulehle, F.: Long-term changes in aluminum fractions of drainage waters in two forest catchments with contrasting lithology, J. Inorg. Biochem., 103, 1465-1472, 2009.

Kristensen, T., Åtland, Å, Rosten, T., Urke, H. A. and Rosseland, B. O.: Important influentwater quality parameters at freshwater production sites in two salmon producing countries, Aquacult. Eng., 41, 53-59, 2009.

Kroglund, F., Finstad, B., Stefansson, S. O., Nilsen, T. O., Kristensen, T., Rosseland, B. O., Teien, H. C. and Salbu, B.: Exposure to moderate acid water and aluminum reduces Atlantic salmon post-smolt survival, Aquaculture, 273, 360-373, 2007.

Kroglund, F., Rosseland, B. O., Teien, H., Salbu, B., Kristensen, T. and Finstad, B.: Water quality limits for Atlantic salmon (Salmo salar L.) exposed to short term reductions in pH and increased aluminum simulating episodes, Hydrology and Earth System Sciences Discussions, 4, 3317-3355, 2007.

Kroglund, F. and Staurnes, M.: Water quality requirements of smolting Atlantic salmon (Salmo salar) in limed acid rivers, Can. J. Fish. Aquat. Sci., 56, 2078-2086, 1999.

Lacoul, P., Freedman, B. and Clair, T.: Effects of acidification on aquatic biota in Atlantic Canada, Env. Rev., 19, 429-460, 2011.

Lacroix, G. L.: Ecological and physiological responses of Atlantic salmon in acidic organic rivers of Nova Scotia, Canada, Water Air Soil Pollut., 46, 375-386, 1989.

Lacroix, G. L. and Townsend, D. R.: Responses of juvenile Atlantic salmon (Salmo salar) to episodic increases in acidity of Nova Scotia rivers, Can. J. Fish. Aquat. Sci., 44, 1475-1484, 1987.

Langan, S. J. and Wilson, M. J.: Predicting the regional occurrence of acid surface waters in Scotland using an approach based on geology, soils and land use, Journal of hydrology, 138, 515-528, 1992.

Lawrence, G.B., Dukett, J.E., Houck, N., Snyder, P. and Capone, C.: Increases in dissolved organic carbon accelerate loss of toxic Al in Adirondack lakes recovering from acidification, Environmental science and technology, 47, 7095-7100, 2013.

Lydersen, E.: The solubility and hydrolysis of aqueous aluminium hydroxides in dilute fresh waters at different temperatures, Hydrology Research, 21, 195-204, 1990.

McCormick, S. D., Lerner, D. T., Monette, M. Y., Nieves-Puigdoller, K., Kelly, J. T. and Björnsson, B. T.: Taking it with you when you go: how perturbations to the freshwater environment, including temperature, dams, and contaminants, affect marine survival of salmon, in: American Fisheries Society Symposium, 2009.

McKnight, D. and Bencala, K. E.: Diel variations in iron chemistry in an acidic stream in the Colorado Rocky Mountains, USA, Arct. Alp. Res., 20, 492-500, 1988.

Monette, M. Y. and McCormick, S. D.: Impacts of short-term acid and aluminum exposure on Atlantic salmon (Salmo salar) physiology: a direct comparison of parr and smolts, Aquatic Toxicology, 86, 216-226, 2008.

Monteith, D. T., Evans, C. D., Henrys, P. A., Simpson, G. L. and Malcolm, I. A.: Trends in the hydrochemistry of acid-sensitive surface waters in the UK 1988-2008, Ecol. Ind., 37, 287-303, 2014.

Murdoch, P. S. and Stoddard, J. L.: The role of nitrate in the acidification of streams in the Catskill Mountains of New York, Water Resour. Res., 28, 2707-2720, 1992.

Neal, C., Smith, C. J., Walls, J. and Dunn, C. S.: Major, minor and trace element mobility in the acidic upland forested catchment of the upper River Severn, Mid Wales, Journal of the Geological Society, 143, 635-648, 1986.

Nilsen, T. O., Ebbesson, L. O., Handeland, S. O., Kroglund, F., Finstad, B., Angotzi, A. R. and Stefansson, S. O.: Atlantic salmon (Salmo salar L.) smolts require more than two weeks to recover from acidic water and aluminium exposure, Aquatic toxicology, 142, 33-44, 2013.

Nilsen, T. O., Ebbesson, L. O., Kverneland, O. G., Kroglund, F., Finstad, B. and Stefansson, S. O.: Effects of acidic water and aluminum exposure on gill Na, K-ATPase α-subunit isoforms, enzyme activity, physiology and return rates in Atlantic salmon (Salmo salar L.), Aquatic Toxicology, 97, 250-259, 2010.

Parrish, D. L., Behnke, R. J., Gephard, S. R., McCormick, S. D. and Reeves, G. H.: Why aren't there more Atlantic salmon (Salmo salar)?, Can. J. Fish. Aquat. Sci., 55, 281-287, 1998.

Poléo, A. B.: Aluminium polymerization-a mechanism of acute toxicity of aqueous aluminium to fish, Aquatic toxicology, 31, 347-356, 1995.

Regish, A. M., Kelly, J. T., O’Dea, M. F. and McCormick, S. D.: Sensitivity of Na /K ATPase isoforms to acid and aluminum explains differential effects on Atlantic salmon osmoregulation in fresh water and seawater, Can. J. Fish. Aquat. Sci., 75, 1319-1328, 2018.

Rodushkin, I., Moiseenko, T. and Kudravsjeva, L.: Aluminium in the surface waters of the Kola Peninsula, Russia, Sci. Total Environ., 163, 55-59, 1995.

Rosseland, B. O., Eldhuset, T. D. and Staurnes, M.: Environmental effects of aluminium, Environ. Geochem. Health, 12, 17-27, 1990.

Schlesinger, W. H. and Bernhardt, E. S.: Biogeochemistry: an analysis of global change, Academic press, 2013.

Schofield, C. L., Galloway, J. N. and Hendry, G. R.: Surface water chemistry in the ILWAS basins, Water Air Soil Pollut., 26, 403-423, 1985.

Schofield, C. L. and Trojnar, J. R.: Aluminum toxicity to brook trout (Salvelinusfontinalis) in acidified waters, in: Polluted rain, Springer, 341-366, 1980.

Skjelkvåle, B. L., Stoddard, J. L., Jeffries, D. S., Tørseth, K., Høgåsen, T., Bowman, J., Mannio, J., Monteith, D. T., Mosello, R. and Rogora, M.: Regional scale evidence for improvements in surface water chemistry 1990-2001, Environmental Pollution, 137, 165-176, 2005.
i)

Staurnes, M., Hansen, L. P., Fugelli, K. and Haraldstad, \emptyset : Short-term exposure to acid water impairs osmoregulation, seawater tolerance, and subsequent marine survival of smolts of Altantic salmon (Salmo salar), Can. J. Fish. Aquat. Sci., 53, 1695-1704, 1996.

Sterling, S., Rotteveel, L., Hart, K., Macleod, S., Björnerås, C., Heubach, F., Clair, T., Howden, N., Bailey, S., Burns, D., Creed, I., de Wit, H., Driscoll, C., Evans, C., Fernandez, I., Green, W., Kortelainen, P., Kritzberg, E., Laudon, H., Lawrence, G., Lehtoranta, J., Malcolm, I., Monteith, D., Oulehle, F., Norton, S., Pembrook, H., Räike, A., Riise, G., Rusak, J., Webster, K. and Weyhenmeyer, G.: Increasing aluminium in lakes and rivers, In prep.

Stoddard, J. L., Jeffries, D. S., Lükewille, A., Clair, T. A., Dillon, P. J., Driscoll, C. T., Forsius, M., Johannessen, M., Kahl, J. S. and Kellogg, J. H.: Regional trends in aquatic recovery from acidification in North America and Europe, Nature, 401, 575, 1999.

Strock, K. E., Nelson, S. J., Kahl, J. S., Saros, J. E. and McDowell, W. H.: Decadal trends reveal recent acceleration in the rate of recovery from acidification in the northeastern US, Environ. Sci. Technol., 48, 4681-4689, 2014.

Summers, P. W. and Whelpdale, D. M.: Acid precipitation in Canada, Water Air Soil Pollut., 6, 447-455, 1976.

Tipping, E.: Acid-sensitive waters of the English Lake District: a steady-state model of streamwater chemistry in the upper Duddon catchment, Environmental Pollution, 60, 181-208, 1989.

US EPA: Method 6020A (SW-846): Inductively coupled plasma-mass spectrometry, 1998.

US EPA.: "Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry," Revision 5.4, 1994.

Walker, W. J., Cronan, C. S. and Bloom, P. R.: Aluminum solubility in organic soil horizons from northern and southern forested watersheds, Soil Sci. Soc. Am. J., 54, 369-374, 1990.

Wang, D., He, Y., Liang, J., Liu, P. and Zhuang, P.: Distribution and source analysis of aluminum in rivers near Xi'an City, China, Environ. Monit. Assess., 185, 1041-1053, 2013.

Warby, R. A., Johnson, C. E. and Driscoll, C. T.: Continuing acidification of organic soils across the northeastern USA: 1984-2001, Soil Sci. Soc. Am. J., 73, 274-284, 2009.

Warby, R. A., Johnson, C. E. and Driscoll, C. T.: Chemical recovery of surface waters across the northeastern United States from reduced inputs of acidic deposition: 1984- 2001, Environ. Sci. Technol., 39, 6548-6554, 2005.

Watmough, S. A., Eimers, C. and Baker, S.: Impediments to recovery from acid deposition, Atmos. Environ., 146, 15-27, 2016.

Watt, W. D.: A summary of the impact of acid rain on Atlantic salmon (Salmo salar) in Canada, Water Air Soil Pollut., 35, 27-35, 1987.

Watt, W. D., Scott, C. D., Zamora, P. J. and White, W. J.: Acid toxicity levels in Nova Scotian rivers have not declined in synchrony with the decline in sulfate levels, Water Air Soil Pollut., 118, 203-229, 2000.

Wauer, G. and Teien, H.: Risk of acute toxicity for fish during aluminium application to hardwater lakes, Sci. Total Environ., 408, 4020-4025, 2010.

Weyhenmeyer G.A., Hartmann J., Hessen D.O., Kopáček J., Hejzlar J., Jacquet S., Hamilton S.K., Verburg P., Leach T.H., Schmid M., Flaim G. Widespread diminishing anthropogenic effects on calcium in freshwaters. Scientific reports. 18;9(1), 10450, 2019.

Whitfield, C. J., Aherne, J., Watmough, S. A., Dillon, P. J. and Clair, T. A.: Recovery from acidification in Nova Scotia: temporal trends and critical loads for 20 headwater lakes, Can. J. Fish. Aquat. Sci., 63, 1504-1514, 2006.

Whitfield, C. J., Aherne, J., Dillon, P. J., and Watmough, S. A.: Modelling acidification, recovery and target loads for headwater catchments in Nova Scotia, Canada, Hydrol. Earth Syst. Sci., 11, 951-963, doi:10.5194/hess-11-951-2007, 2007.

Witters, H. E., Van Puymbroeck, S., Vangenechten, J. and Vanderborght, O.: The effect of humic substances on the toxicity of aluminium to adult rainbow trout, Oncorhynchus mykiss (Walbaum), J. Fish Biol., 37, 43-53, 1990.
Tables
One e standard deviation. ean concentration is Al_{i} outlier removed for MR (value: $2 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}$, date: 30 April 2015). pH is calibrated using the method outlined in Appendix D.4.

Site	Lat	Long	Area $\left(\mathrm{km}^{2}\right)$	n	Land use	Dominant Bedrock Type	Mean Ali (ug L^{-1})	Mean DOC ($\mathrm{mg} \mathrm{L}^{-1}$)	Mean Ald (ug L- ${ }^{1}$)	Mean Ca (ug L^{-1})	Mean pH
Mersey River (MR)	44.437	-65.223	292.8	47	Natural forest	Granite	$\begin{aligned} & 22.5 \\ & (11.7) \end{aligned}$	$\begin{aligned} & \hline 8.6 \\ & (2.7) \end{aligned}$	$\begin{aligned} & 195 \\ & (54.9) \end{aligned}$	$\begin{aligned} & \hline 699 \\ & (120) \end{aligned}$	5.1
Moose Pit Brook (MPB)	44.462	-65.048	15.8	39	Natural forest	Granite/slate	$\begin{aligned} & 20.8 \\ & (12.2) \end{aligned}$	$\begin{aligned} & 15.8 \\ & (6.1) \end{aligned}$	$\begin{aligned} & 249 \\ & (85.9) \end{aligned}$	$\begin{aligned} & 826 \\ & (344) \end{aligned}$	5.0
Pine Marten Brook (PMB)	44.436	-65.209	1.5	15	Natural forest	Slate	$\begin{aligned} & 13.5 \\ & (12.0) \end{aligned}$	$\begin{aligned} & 8.6 \\ & (3.3) \end{aligned}$	$\begin{aligned} & 149 \\ & (43.4) \end{aligned}$	$\begin{aligned} & 969 \\ & (536) \end{aligned}$	5.1
Maria Brook (MB)	44.779	-64.414	0.2	12	Natural forest	Granite	$\begin{aligned} & 40.1 \\ & (23.2) \end{aligned}$	$\begin{aligned} & 9.8 \\ & (4.4) \end{aligned}$	$\begin{aligned} & 319 \\ & (99.2) \end{aligned}$	$\begin{aligned} & 1292 \\ & (286) \end{aligned}$	5.1
Brandon Lake Brook (BLB)	45.021	-62.690	1.3	22	Natural forest	Sandstone/slate	$\begin{aligned} & 48.7 \\ & (27.6) \end{aligned}$	$\begin{aligned} & 16.0 \\ & (8.3) \end{aligned}$	$\begin{aligned} & 350 \\ & (71.0) \end{aligned}$	$\begin{aligned} & 836 \\ & (272) \end{aligned}$	4.9
Upstream of West River Lime Doser (ALD)	45.054	-62.800	32.3	22	Natural forest	Sandstone/slate	$\begin{aligned} & 45.3 \\ & (26.7) \end{aligned}$	$\begin{aligned} & 13.8 \\ & (3.7) \end{aligned}$	$\begin{aligned} & 243 \\ & (64.8) \end{aligned}$	$\begin{aligned} & 759 \\ & (126) \end{aligned}$	5.2
Upper Killag River (UKR)	45.064	-62.705	36.8	18	Natural forest	Sandstone/slate	$\begin{aligned} & 43.5 \\ & (23.5) \end{aligned}$	$\begin{aligned} & 12.8 \\ & (3.0) \end{aligned}$	$\begin{aligned} & 224 \\ & (68.3) \end{aligned}$	$\begin{aligned} & 739 \\ & (230) \end{aligned}$	5.3
Little River (LR)	44.952	-62.611	47.1	13	Natural forest	Sandstone/slate	$\begin{aligned} & 15.1 \\ & (11.7) \end{aligned}$	$\begin{aligned} & 7.2 \\ & (1.9) \end{aligned}$	$\begin{aligned} & 109 \\ & (46.1) \end{aligned}$	$\begin{aligned} & 746 \\ & (166) \end{aligned}$	5.4
Keef Brook (KB)	45.0284	-62.7153	2.3	5	Natural forest	Sandstone/slate	$\begin{aligned} & 28.2 \\ & (11.5) \end{aligned}$	$\begin{aligned} & 10.8 \\ & (3.6) \end{aligned}$	$\begin{aligned} & 281 \\ & (80.4) \end{aligned}$	$\begin{aligned} & 621 \\ & (275) \end{aligned}$	5.1
Colwell Creek (CC)	45.0279	-62.7127	1.7	8	Natural forest	Sandstone/slate	$\begin{aligned} & 58.9 \\ & (41.7) \end{aligned}$	$\begin{aligned} & 23.1 \\ & (5.1) \end{aligned}$	$\begin{aligned} & 411 \\ & (117) \end{aligned}$	$\begin{aligned} & 750 \\ & (568) \end{aligned}$	5.0

pH		DOC		Tw		Al_{d}		Ca
slope	r^{2}	slope	r^{2}	slope	r^{2}	slope	r^{2}	slope

Season 1
MR
MPB

-7.67	0.78
8.44	0.0045

0.49
.
0.26

Figures

Figure 1. Study site locations showing proportion of samples when Al_{i} concentrations exceeded the $15 \mu \mathrm{~g}$
L^{-1} toxic threshold. For additional site details, refer to Table 1.
https://doi.org/10.5194/hess-2019-438
Preprint. Discussion started: 28 October 2019
(c) Author(s) 2019. CC BY 4.0 License.

Hydrology and Earth System Sciences

Discussions

Figure 2. Mean Al_{i} concentrations between spring 2015 to fall 2018.

Figure 3. Correlation among water chemistry parameters and Al_{i} concentration, where red polygons and lines indicate a positive correlation with Al_{i}, and blue polygons and lines indicate a negative correlation
with Al_{i}. One Al_{i} outlier removed for MR (value: $2 \mu \mathrm{~g} \mathrm{~L}^{-1}$, date: 30 April 2015). Correlation data are listed in Table A4.

Figure 4. Scatterplot relationships among water chemistry parameters for seasons 1, 2, and 3 at MR and MPB. R^{2} values are listed in Table A5. One runoff outlier removed for MR (value: $17.294 \mathrm{~m} 3 \mathrm{~s}^{-1}$, date: 22 April 2015). One runoff outlier removed for MPB (value: $34.994 \mathrm{~m} \mathrm{~s} \mathrm{~s}^{-1}$, date: 22 April 2015).
Appendix A. Tables
Table $\mathrm{A} 1 \mathrm{Al}_{\mathrm{i}}$ terminology, speciation methodology, and trends from published studies. Several methods do not measure Al_{i} in situ, which can cause error due to
changes in temperature, DOC and pH , which vary during transit to the lab. Increased pH and increased temperature in lab conditions can cause the
underestimation of $\mathrm{Al}_{\mathrm{i}} . \mathrm{Al}_{\mathrm{nl}}=$ non-labile $\mathrm{Al}, \mathrm{Al}_{\mathrm{tm}}=$ total monomeric $\mathrm{Al}, \mathrm{Al}_{\mathrm{om}}=$ organic monomeric $\mathrm{Al}, \mathrm{Al}_{\mathrm{tr}}=$ total reactive $\mathrm{Al}, \mathrm{Al} \mathrm{l}_{\mathrm{nlm}}=\mathrm{non}-\mathrm{labile}$ monomeric Al ,
$\mathrm{Al}_{\mathrm{m}}=$ monomeric $\mathrm{Al} . \mathrm{CEC}=$ Cation Exchange Column, ICP-AES= Inductively Coupled Plasma-Atomic Emission Spectroscopy. AWMN=Acid Waters
Monitoring Network.

Al Species	Definition	Analysis Method	Trend	Location	Reference
Al_{i}	Inorganic Al	Colourimetry ($\mathrm{Al}_{\mathrm{t}}-\mathrm{Al}_{\mathrm{nl}}$)	Decreasing Al_{i} from 1988-2008	AWMN in UK	Monteith et al. (2014)
$\mathrm{Al}_{\text {im }}$	Inorganic monomeric Al	Colourimetry $\left(\mathrm{Al}_{\mathrm{tm}}-\mathrm{Al}_{\mathrm{om}}\right)$	Decreasing Al_{i} from 2001-2011	New York, USA	Josephson et al. (2014)
Al_{i}	Ionic Al	$\operatorname{CEC}\left(\mathrm{Al}_{\mathrm{t}}-\mathrm{Al}_{\mathrm{o}}\right)$	Mean NS Al $=25.3 \mu \mathrm{~g} / \mathrm{L}$ Mean NB Al $=31.0 \mu \mathrm{~g} / \mathrm{L}$	Atlantic Canada	Dennis and Clair (2012)
Al_{i}	Ionic Al	Colourimetry	Decreasing Al_{i} in lakes	Norway	Hesthagen et al. (2011)
LA1	Inorganic Al (sum of inorganic and monomeric Al species)	ICP-AES, Flow injection, Pyrocatechol violet, and CEC ($\mathrm{Al}_{\mathrm{tr}^{-}}$ $\mathrm{Al}_{\mathrm{nl}}$)	15% of LA1 samples were >10 $\mu \mathrm{g} / \mathrm{L}$	Norway	Kristensen et al. (2009)
Al-1	Labile/cationic/inorganic monomeric Al	Colourimetry $\left(\mathrm{Al}_{\mathrm{tm}}-\mathrm{Al}_{\mathrm{nlm}}\right)$	Decreasing Al-l across the UK	AWMN in UK	Evans \& Monteith (2001)
$\mathrm{Al}_{\text {im }}$	Labile Al (free and inorganically complexed Al)	Van Benschoten method	Mean $\mathrm{Al}_{\text {im }}$ of $72 \mu \mathrm{~g} / \mathrm{L}$ from 20092010	China	Wang et al. (2013)

| Al_{i} | Inorganic monomeric | Colourimetry and CEC
 $\left(\mathrm{Al}_{\mathrm{m}}-\mathrm{Al}_{\mathrm{o}}\right)$ | Al_{i} fraction decreased in
 catchments between $1991 \& 2007$ | Czech Republic | Kram et al. (2009) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Al_{i} | Inorganic Al | AAS | Decreasing Al_{i} from 1990-2010 | Adirondack
 Mountains, USA | Strock et al.
 (2014) |

Table A2 Raw sample data. RL: rising limb of hydrograph, FL: falling limb of hydrograph, and BF: base flow. Air temperature (T_{a}) data were collected from the
Kejimkujik 1 weather station (Climate ID: $8202592 ; 44.24^{\prime} 11.020^{\circ} \mathrm{N}, 65.12^{\prime} 11.070^{\circ} \mathrm{W}$) for MR, MPB, PMB, and MB, and the Stanfield Airport weather station
(Climate ID: $8202251 ; 44^{\circ} 52^{\prime} 52.000^{\prime \prime} \mathrm{N}, 63^{\circ} 30^{\prime} 31.000^{\prime \prime} \mathrm{W}$) for CC, KB, ALD, BLB, UKR, and LR. Missing T_{a} data were replaced with data from another local
meteorological tower located one kilometer to the northwest of the MPB site (44.469549, -65.061295).

Site	Date	$\mathrm{Al}_{\mathrm{i}}\left(\boldsymbol{\mu g} \mathrm{L}^{-1}\right)$	$\begin{gathered} \mathbf{A l}_{\mathbf{o}} / \mathbf{A l _ { \mathbf { d } }} \\ (\%) \end{gathered}$	Season	$\begin{gathered} A \mathbf{l l}_{\mathrm{d}}(\mu \mathrm{~g} \\ \left.\mathbf{L}^{-1}\right) \end{gathered}$	$\begin{gathered} \mathrm{Ca} \\ (\mu \mathrm{~g} \\ \left.\mathbf{L}^{-1}\right) \end{gathered}$	$\begin{gathered} \text { DOC } \\ (\mathbf{m g} \\ \left.\mathbf{L}^{-1}\right) \end{gathered}$	$\underset{\left.\mathbf{L}^{-1}\right)}{\mathrm{SO}_{4}(\mu \mathrm{~g}}$	$\underset{\text { (unit) }}{\mathbf{p H}}$	Tw(${ }^{(} \mathbf{C}$)	$\begin{gathered} \mathbf{T}_{\mathbf{a}} \\ \left({ }^{\circ} \mathbf{C}\right) \end{gathered}$	Discharge ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	Runoff (mm day $^{-1}$)	Hydrograph Stage
ALD	2016-04-29	19	87.7	1	155	591	7	899	4.67	6.8	4			
ALD	2016-05-19	12	94.1		202	800	10.7	1414	5.89		12.0			
ALD	2016-06-03	25	90.7	2	268	722	12.5	639	5.02	16.6	13.2			
ALD	2016-06-16	32	88.3	2	274	674	12.9	578	4.99	13.2	13			
ALD	2016-06-28	28	89.4	2	265	720	12.2	959	5.26	22.1	24.2			
ALD	2016-07-15	37	87	2	285	792	15	761	5.11	20.7	19.6			
ALD	2016-08-05	48	79.9		239	700	19.4	1414	5.98		21.2			
ALD	2016-09-10	48	78.2		220	1000	14.8	2000	5.03		20.8			
ALD	2016-10-02	13	92.3		169	1000	14.4	3000	5.27		11.4			
ALD	2016-11-19	44	82		245	900	14.6	1414	5.03		7.6			
ALD	2017-04-19	27	81.1	1	143	600	10.4	1209	4.55	7.8	3.2			
ALD	2017-05-14	69	61	2	177	600	12.1	923	4.92	13.4	4			
ALD	2017-05-30	37	85.8	2	261	600	11.8	2536	4.77	14.3	12.2			
ALD	2017-06-22	100	59.8	2	249	700	15.2	1414	5.17	22.8	25			

ALD	2017-07-13	62	80.3	2	315	800	19.3	1414	5.24	20.6	18.5
ALD	2017-08-01	26	89	2	236	800	15.1	1414	4.96	25.6	28.4
ALD	2017-08-23	35	84.4	2	224	700	13.2	1125	5.14	21.8	21
ALD	2017-09-16	77	82.5	2	439	1000	23.5		4.73	20.7	18.7
ALD	2018-05-10	46	75.7		189	700	8.8	1414	5.64		7.5
ALD	2018-06-07	43	83.8		266	700	16.1	1414	5.13		11.0
ALD	2018-07-05	119	62.5		317	800	13.6	1414	5.61		23.8
ALD	2018-11-23	50	76		208	800	10.1	1414	5.45		-9.1
BLB	2016-04-29	20	89.5	2	190	476	7.2	936	5.03	5.7	4
BLB	2016-06-03	60	82.1	4	336	770	11.9	669	4.78	10.1	13.5
BLB	2016-06-16	33	91.2	4	373	789	13.2	1158	4.77	9.8	13
BLB	2016-06-28	26	93.3	4	388	894	13.6	1251	4.67	13.1	23.9
BLB	2016-07-15	42	90.5	4	443	887	16.7	723	4.77	14.3	18.7
BLB	2016-08-05	6	98.6		429	1000	26.2	1414	5.29		21.2
BLB	2016-09-10	81	77.1		354	900	48.3	1414	4.87		20.8
BLB	2016-10-02	33	90.1		335	1000	18.5	2000	5.1		11.4
BLB	2016-11-19	28	92.6		379	1000	17.2	1414	4.76		7.6
BLB	2017-04-19	41	79.1	4	196	600	9.6	1927		4.2	4
BLB	2017-05-14	46	82.6	4	264	800	12.9	1550		7.7	6
BLB	2017-05-30	36	88.3	4	308	700	11.3	1795		8.4	14.9
BLB	2017-06-22	110	70.1	4	368	800	14.9	1414	4.8	17.3	24.6

 \& \& \& \& \& \& \& \& \&
 $\rightarrow+m \quad+\quad+\quad+$

 m
\vdots
\vdots
\vdots
$\stackrel{1}{1}$
$\stackrel{\rightharpoonup}{\lambda}$ $\overline{0}$
0
\vdots
\vdots
\vdots
\vdots

0
\vdots
$\frac{1}{2}$
$\stackrel{1}{3}$
$\stackrel{1}{2}$
0
$\frac{1}{6}$
$\frac{1}{2}$
∞
∞ 2018-06-07 2018-07-05 2018-10-02 とて-I I-8I0Z 2016-06-03 2016-06-16
 n
$\frac{1}{1}$
1
1
0
2 n
0
0
0
0
0
0

i | 0 |
| :--- |
| |
| 1 |
| 0 |
| \vdots |
| \vdots | | O |
| :---: |
| \vdots |
| \vdots |
| \vdots |
| 0 | | 9 |
| :---: |
| \vdots |
| \vdots |
| \vdots |
| \cdots | 2016-04-29 2016-06-03 0

\vdots
0
0
0
\vdots
ते ∞
N
b
\vdots
\vdots
ci n
$\frac{n}{1}$
0
i
$\frac{1}{2}$
in

Preprint．Discussion started： 28 October 2019
（C）Author（s）2019．CC BY 4．0 License．

$\underset{\sim}{\sim}$	$\stackrel{\infty}{\infty}$	$\underset{\exists}{\underset{\sim}{*}}$		\bigcirc	$\stackrel{n}{\mathrm{i}}$	9	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\underset{\sim}{\top}}$	$\stackrel{n}{\sim}$	$\begin{aligned} & \infty \\ & i \\ & i \end{aligned}$	$\stackrel{n}{n}$	$\stackrel{O}{=}$	工	$\begin{aligned} & \stackrel{\circ}{ \pm} \\ & \hline \end{aligned}$	$\hat{\sim}$	$\stackrel{\sim}{\infty}$	\checkmark	\bigcirc	$\stackrel{\sim}{\square}$	$\underset{~ N}{n}$	へ
			\bigcirc	$\stackrel{\mathrm{N}}{\mathrm{I}}$	\sim	$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\stackrel{\infty}{\underset{\sim}{\lambda}}$	$\begin{aligned} & \circ \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\circ}{\underset{\sim}{n}}$	$\underset{\sim}{\dot{O}}$			0_{0}^{∞}	$\stackrel{\mathrm{N}}{=}$	$\stackrel{n}{0}$	$\begin{aligned} & n \\ & n \end{aligned}$	$\stackrel{?}{\mathrm{~N}}$	\bar{a}	\bar{a}	$\stackrel{\text { r }}{\sim}$	$\stackrel{\infty}{\infty}$
$\stackrel{o}{6}$	$\hat{0}$	$\begin{aligned} & \stackrel{0}{i} \\ & i \end{aligned}$	$\underset{\sim}{\infty}$	$\underset{\sim}{\circ}$	$\begin{aligned} & \underset{\sim}{n} \end{aligned}$	$\stackrel{i}{n}$	$\underset{i n}{\underset{\sim}{n}}$	$\bar{\square}$	$\stackrel{N}{n}$	$\begin{aligned} & \bar{i} \\ & i \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { in } \end{aligned}$	$\begin{aligned} & n \\ & n \\ & n \end{aligned}$	$\frac{ \pm}{i n}$	$\begin{aligned} & \overrightarrow{0} \\ & i \end{aligned}$	$\stackrel{\infty}{\underset{i}{n}}$	$\stackrel{\rightharpoonup}{i}$	$\stackrel{\infty}{\stackrel{\infty}{+}}$	$\underset{\sim}{\underset{\sim}{*}}$	$\underset{子}{\underset{子}{2}}$	$\frac{\infty}{i n}$	$\frac{m}{i}$
\pm	\pm	ois	$\frac{0}{ \pm}$	$\stackrel{m}{2}$	$\underset{N}{N}$	$\underset{\Xi}{ \pm}$	\pm	$\underset{\Xi}{ \pm}$	$\underset{\sim}{\sim}$	$\underset{\Xi}{ \pm}$	$\underset{ \pm}{ \pm}$	$\underset{ \pm}{ \pm}$	$\stackrel{\infty}{\stackrel{\infty}{\sim}}$	$\underset{\mathrm{J}}{\mathrm{~J}}$	$\stackrel{\rightharpoonup}{\infty}$	$\underset{\text { I }}{ }$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \infty \\ & \cdots \\ & \sim \end{aligned}$	$\hat{\lambda}$	\cdots	$\stackrel{\infty}{\circ}$
$\stackrel{\sim}{i}$	$\stackrel{+}{+}$	$\stackrel{\rightharpoonup}{0}$	T	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\circ}{\infty}$	$\stackrel{\sim}{\infty}$	$\stackrel{\square}{6}$	${ }_{\bullet}^{\circ}$	\ni	$\widehat{6}$	$\hat{¢}$	$\stackrel{\sim}{\infty}$	$\stackrel{\infty}{\bullet}$	$\stackrel{+}{\infty}$	$\stackrel{\bigcirc}{\stackrel{-}{\sim}}$	\pm	N	$\stackrel{\text { N }}{ }$	の	$\stackrel{\infty}{\sim}$	$\stackrel{n}{\square}$
8	$\underset{\infty}{8}$	\&	8	8	8	®	8	8	8	§	8	8	8 $\underset{1}{2}$	8 2	$\frac{0}{0}$	$\stackrel{\infty}{\stackrel{\infty}{\leftrightharpoons}}$	$\underset{\infty}{\infty}$	$\stackrel{N}{人}$	8	$\begin{aligned} & \circ \\ & \underset{寸}{\circ} \end{aligned}$	$\xrightarrow{\text { ® }}$
$\stackrel{ \pm}{n}$	∞	$\xrightarrow{\square}$	$\underline{=}$	$\stackrel{\text { pin }}{2}$	岕	\cong	$\stackrel{\circ}{\circ}$	6	\ni	2	$\stackrel{\curvearrowleft}{n}$	$\stackrel{\text { N}}{\sim}$	$\stackrel{\stackrel{\rightharpoonup}{N}}{ }$	Oin	$\underset{\sim}{ \pm}$	¿ిల	$\underset{\sim}{\circ}$	ત̈	o্m	$\frac{o}{n}$	$\stackrel{n}{n}$
			－	\sim			\sim	\sim	\sim	\sim	－	－	\sim	\sim	\sim						
i	$\bar{\lambda}$	$\underset{\sim}{n}$	$\stackrel{0}{\infty}$		∞	\mathfrak{a}	$\underset{\infty}{\infty}$	ò	$\underset{\substack{\infty \\ \infty}}{\substack{0}}$	$\underset{\text { O }}{\substack{2}}$	$\underset{~}{\underset{~}{\prime}}$	$\underset{\infty}{\circ}$	$\underset{\infty}{\infty}$	$\stackrel{\text { N }}{\underset{\sim}{2}}$	$\begin{aligned} & n \\ & \text { ǹ } \end{aligned}$	$\underset{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\underset{\infty}{\dot{\infty}}$	$\stackrel{\varrho}{\infty}$	$\stackrel{\Gamma}{\infty}$	$\stackrel{\uparrow}{\infty}$
へ	\cdots	\bigcirc	－	$\stackrel{\sim}{2}$	N	m	工	N	n	n	n	$\stackrel{\sim}{\sim}$	－	\sim	N	\bigcirc	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{+}$	¢	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{+}$
$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & i \end{aligned}$	0 1 8 6 -1	$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & \text { b́ } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{a}{4} \\ & \dot{4} \\ & \stackrel{1}{3} \\ & \underset{i}{2} \end{aligned}$	$\begin{aligned} & \pm \\ & \text { t } \\ & \text { i} \\ & \frac{1}{2} \\ & \text { N} \end{aligned}$	$\begin{aligned} & 0 \\ & \vdots \end{aligned}$			$\overrightarrow{0}$ o $\stackrel{1}{1}$ $\stackrel{1}{2}$ $\stackrel{1}{2}$	$\begin{aligned} & \text { n} \\ & \text { ó } \\ & 0 \\ & \vdots \\ & \underset{\sim}{c} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { o} \\ & \text { o } \\ & \frac{1}{2} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{1}{1} \\ & \frac{1}{6} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & \hat{O} \\ & \dot{0} \\ & \dot{o} \\ & \infty \\ & \underset{N}{\infty} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { ஸ̀ } \\ & \dot{0} \\ & \text { N} \end{aligned}$	n 6 0 0 6 0 	$\begin{aligned} & \text { N} \\ & \text { ó } \\ & \text { ó } \\ & \text { त̀ } \end{aligned}$	$\begin{aligned} & \pm \\ & \vdots \\ & \vdots \\ & i \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { N } \\ & \text { d } \\ & \text { N} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & m \\ & \vdots \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{1} \\ & \text { ì } \\ & \stackrel{1}{\lambda} \\ & \stackrel{N}{2} \end{aligned}$	\vec{N} $\stackrel{y}{0}$ $\stackrel{1}{c}$ $\stackrel{1}{2}$	$\begin{aligned} & \text { N } \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$
믁	믁	$\stackrel{4}{4}$	먹	$\underset{\sim}{c}$	믁	$\underset{\sim}{x}$	$\xrightarrow{\square}$		$\underset{\sim}{4}$	$\stackrel{4}{4}$	득	믁	\sum_{Σ}^{∞}	\sum_{Σ}^{\oplus}	\sum_{Σ}^{\oplus}	\sum_{Σ}^{∞}	\sum_{i}^{∞}	\sum_{Σ}^{∞}	\sum_{Σ}^{∞}	\sum_{Σ}^{∞}	\sum^{n}

			$\begin{aligned} & \text { N} \\ & \underset{\sim}{2} \end{aligned}$		$\stackrel{g}{子}$	$\stackrel{\ddots}{\circ}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \mathrm{C} \end{aligned}$	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\aleph}{\aleph}$	$\underset{\underset{\sim}{A}}{\substack{\text { I }}}$	$\underset{\sim}{\mathrm{O}}$	$\stackrel{N}{n}$	$\stackrel{\infty}{n}$	$\begin{aligned} & \mathbb{N} \\ & \underset{\sim}{0} \end{aligned}$	N్ర	N్ర	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\infty}{\underset{\sim}{\mathrm{O}}}$	$\stackrel{\infty}{\text { Nু }}$	$\frac{\mathrm{o}}{0}$	$\frac{9}{0}$
			F	$\stackrel{9}{-}$	$\stackrel{\circ}{\circ}$	on	Nુ	$\stackrel{n}{0}$	$\xrightarrow{\text { ¢ }}$	N	ก	$\stackrel{\infty}{\sim}$	तิ	0	$\stackrel{O}{\circ}$	$\stackrel{\circ}{\circ}$	$\frac{n}{6}$	©	$\underset{O}{\text { to }}$	O\％	\％
$\stackrel{\text { へ }}{\text {－}}$	$\stackrel{\bullet}{\text { ®̀ }}$	त	$\stackrel{n}{n}$	$\stackrel{n}{\square}$	\pm	\sim	\simeq	$\bar{\sim}$	∞	\bigcirc	\bigcirc	$\stackrel{\sim}{\sim}$	8	ก	$\stackrel{\sim}{\sim}$	\wedge	の	9	$\bar{\sim}$	\pm	\bigcirc
$\stackrel{\bullet}{\sim}$	\cdots	$\stackrel{\text { ® }}{ \pm}$		\cdots		$\stackrel{\stackrel{\sim}{\mathrm{m}}}{ }$	$\stackrel{+}{\square}$	Э	$\stackrel{\sim}{\sim}$	$\stackrel{\bigcirc}{ \pm}$	$\stackrel{\bullet}{\square}$	$\stackrel{\sim}{\sim}$	فٌ	$\stackrel{\text { º }}{\sim}$	흠	$\stackrel{+}{\infty}$	$\stackrel{\text { ® }}{ }$	$\frac{n}{N}$	$\stackrel{\infty}{\infty}$	$\stackrel{\text { N }}{\text { N }}$	$\stackrel{\square}{4}$
$\stackrel{\circ}{\stackrel{\circ}{i}}$	$\stackrel{\rightharpoonup}{子}$	$\underset{i}{4}$		$\underset{子}{\underset{子}{f}}$		$\frac{\infty}{i n}$	$\begin{gathered} \text { ñ } \\ \end{gathered}$	$\stackrel{\underset{i n}{n}}{ }$	$\stackrel{\cong}{i}$	$\underset{\sim}{\underset{\sim}{n}}$	$\frac{i n}{i n}$	in	or	$\underset{\sim}{\text { Hin }}$	$\frac{\infty}{i}$	$\stackrel{0}{n}$	సे	$\stackrel{n}{n}$	$\underset{\sim}{n}$	$\stackrel{\infty}{\infty}$	in
－్ర్రి	${ }_{\infty}^{\infty}$	$\stackrel{\sim}{\sim}$	$\stackrel{\theta}{0}$	$\underset{\text { N }}{ }$	$\underset{\sim}{\text { d }}$	～\％	\cdots	\％	\％	ま	\％	in	I	8	¢	\cdots	$\stackrel{\ddagger}{\beth}$	\％	$\stackrel{\infty}{6}$	ㅊ	$\stackrel{8}{8}$
ב̇	त	＝	$\stackrel{\sim}{+}$	$\stackrel{+}{i}$	\ominus_{0}	$\stackrel{\sim}{\infty}$	\cdots	$\stackrel{+}{\bigcirc}$	$\stackrel{?}{\leftrightharpoons}$	$\stackrel{\leftrightarrow}{\mathrm{m}}$	$\stackrel{\square}{\square}$	2	$\stackrel{0}{\mathrm{O}}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	へ	®ٌ	$\stackrel{\infty}{\infty}$	\bigcirc	®	$\stackrel{3}{0}$	\bigcirc
$\stackrel{P}{\square}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	8	－	－	\％	$\stackrel{\infty}{\text { ¢ }}$	Ј్ర	io	$\stackrel{\bigcirc}{\gtrless}$	$\sqrt{6}$	$\stackrel{\pi}{2}$	$\stackrel{\square}{\sim}$	$\stackrel{\sim}{2}$	さ	$\stackrel{\bigcirc}{\gtrless}$	$\stackrel{\circ}{\sim}$	$\stackrel{N}{\square}$	－	$\stackrel{\infty}{\curvearrowright}$	ま	$\stackrel{\square}{\sim}$
$\bar{\sim}$	\％	$\stackrel{\sim}{\text { ¢ }}$	N	∞	$\stackrel{1}{2}$	$\stackrel{\infty}{\sim}$	2	E	O	$\stackrel{\sim}{\sim}$	$\stackrel{\text { ते }}{ }$	$\stackrel{\rightharpoonup}{\lambda}$	俞	¢	$\stackrel{\infty}{\sim}$	¢	$\stackrel{9}{4}$	志	$\bar{\sim}$	～	ત
\sim	\sim	m	－	－	－	\sim	N	\sim	\sim	\sim	\sim										
$\underset{\infty}{\underset{\infty}{-}}$	$\underset{\infty}{\infty}$	$\underset{\infty}{\infty}$	$\overrightarrow{\text { I}}$	$\dot{\alpha}$	$\begin{aligned} & \infty \\ & \underset{\alpha}{\circ} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{\star}{\alpha}$	N্ৰ	n	$\begin{aligned} & \infty \\ & \underset{\alpha}{i} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\underset{\sim}{\dot{N}}$	$\stackrel{\infty}{\infty}$	Nì	$\underset{\sim}{\mathrm{M}}$	$\frac{n}{a}$	$\underset{\sim}{i}$	$\dot{\sigma}$	$\underset{\infty}{\infty}$	$\underset{\infty}{+}$	$\stackrel{\square}{\square}$
\mathfrak{F}	∞	－	\sim	\checkmark	n	n	－	n	\cdots	\wedge	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	\％	$\xlongequal{2}$	9	$\bar{\sim}$	$\stackrel{\sim}{-}$	\cdots	へ	\cdots	$\stackrel{1}{2}$
	$\begin{aligned} & \text { İ } \\ & \text { ó } \\ & \text { d } \\ & \text { ¿̀ } \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { tu } \\ & \dot{n} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{aligned} & \text { on } \\ & + \\ & \vdots \\ & i \\ & \stackrel{1}{c} \end{aligned}$		$\begin{aligned} & ⿳ 亠 丷 厂 彡 \\ & \vdots \\ & i \\ & \stackrel{\rightharpoonup}{c} \end{aligned}$	$\begin{aligned} & \text { y } \\ & \text { ì } \\ & \dot{i} \\ & \text { ì } \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { ì } \\ & \stackrel{\rightharpoonup}{i} \\ & \underset{i}{2} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{1} \\ & \stackrel{i}{c} \end{aligned}$			$\begin{aligned} & \text { İ } \\ & \text { ò } \\ & \text { on } \\ & \text { di } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{0}{1} \\ & \stackrel{1}{n} \\ & \stackrel{i}{c} \end{aligned}$	$\begin{aligned} & n \\ & \frac{n}{1} \\ & \stackrel{n}{c} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \text { त } \\ & \text { ते } \\ & \text { in } \\ & \text { di } \end{aligned}$		$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & \stackrel{1}{c} \\ & \underset{\sim}{n} \end{aligned}$		$\begin{aligned} & \stackrel{a}{\dot{o}} \\ & \stackrel{1}{0} \\ & \stackrel{i}{c} \end{aligned}$	
\sum^{n}	\sum_{\sum}^{\cong}	$\stackrel{m}{\sum}$	$\stackrel{\cong}{\sum}$	$\stackrel{\cong}{\sum}$	\sum_{\sum}^{\cong}	$\stackrel{\cong}{\sum}$	\sum_{\sum}^{\cong}	\sum_{\sum}^{∞}	$\stackrel{\cong}{\sum}$	\sum_{\sum}^{∞}	\sum_{\sum}^{∞}	\sum_{Σ}^{∞}	\sum_{Σ}^{∞}	$\stackrel{\cong}{\sum}$	\sum_{Σ}^{\cong}	$\stackrel{\cong}{\sum}$	\sum_{Σ}^{∞}	\sum_{\sum}^{∞}	\sum_{Σ}^{∞}	\cong	$\stackrel{\sim}{2}$

2015-09-02

 2015-10-07 2015-10-14 2016-04-28
 2016-06-15 LZ-90-910z が-L0-910z T
$\stackrel{y}{+}$
$\stackrel{\rightharpoonup}{+}$

 2017-07-12 $\vec{~}$
$\stackrel{+}{3}$
$\stackrel{\rightharpoonup}{7}$
 2017-09-17 2015-04-22 8
$\stackrel{8}{9}$
$\stackrel{3}{2}$
0

¢		$\frac{\pi}{2}$	$\underset{\infty}{\infty}$	\% \%	ホু	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\text { ob }}$	$\stackrel{\infty}{\underset{\sim}{0}}$	$\stackrel{\text { d }}{\infty}$	$\stackrel{0}{\circ}$	$\stackrel{\rightharpoonup}{\hat{N}}$	$\underset{\substack{\infty}}{\infty}$	$\underset{\substack{0 \\ 0}}{ }$	$\stackrel{\otimes}{0}$	$\stackrel{\circ}{\circ}$	$\stackrel{\bar{N}}{\circ}$	$\stackrel{\stackrel{O}{0}_{0}^{0}}{6}$	$\stackrel{\substack{0 \\ \hline}}{ }$	$\stackrel{\underset{\sim}{\infty}}{\stackrel{\rightharpoonup}{0}}$	$\stackrel{\underset{\sim}{\circ}}{\stackrel{\infty}{-}}$	กิ์
તi	$\begin{aligned} & \text { n } \\ & \text { in } \end{aligned}$	$\stackrel{\imath}{\text { no }}$	n	Ұ	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\underset{子}{\circ}}$	$\stackrel{\infty}{\stackrel{\infty}{2}}$	$\begin{aligned} & \pm \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	\pm	－	9	\mathfrak{f}	$\%$	$\stackrel{n}{n}$	$\stackrel{\otimes}{\circ}$	$\underset{\square}{\ddagger}$	n	\aleph	$\stackrel{\text { N゙ }}{ }$	$\stackrel{7}{\infty}$	

$\underset{\sim}{\infty} \underset{\sim}{\infty}$ ぶ

MR	$2015-05-06$
MR	$2015-05-13$
MR	$2015-05-20$
MR	$2015-05-27$
MR	$2015-06-03$
MR	$2015-06-10$
MR	$2015-06-17$
MR	$2015-06-24$
MR	$2015-07-02$
MR	$2015-07-08$
MR	$2015-07-15$
MR	$2015-07-22$
MR	$2015-07-29$
MR	$2015-08-05$
MR	$2015-08-12$
MR	$2015-08-19$
MR	$2015-08-26$
MR	$2015-09-02$
MR	$2015-09-09$
MR	$2015-09-16$
MR	$2015-09-23$
MR	$2015-09-30$

 \(\vec{\propto}\) 山
 $\underset{\sim}{\infty}$ ぶ

Preprint. Discussion started: 28 October 2019

ㄴ
$\stackrel{n}{i}$
$\stackrel{\varrho}{\circ}$

https://doi.org/10.5194/hess-2019-438
Preprint. Discussion started: 28 October 2019
(C) Author(s) 2019. CC BY 4.0 License.

a $4 \operatorname{coc} 4 \mathrm{a}$

UKR	$2017-05-14$
UKR	$2017-05-30$
UKR	$2017-06-22$
UKR	$2017-07-13$
UKR	$2017-08-01$
UKR	$2017-08-23$
UKR	$2017-09-16$
UKR	$2018-05-10$
UKR	$2018-06-07$
UKR	$2018-07-05$
UKR	$2018-10-02$
UKR	$2018-11-23$

Table A4 Kendal-tau correlation and significance $(\alpha=0.05)$ between Al_{i} and other water chemistry parameters for each study site. One Al_{i} outlier removed for MR calculations (value: $2 \mu \mathrm{~g} \mathrm{~L}^{-1}$, date: 30 April 2015).

Site	Variable	Unit	Correlation Slope	Significance (p-value)
ALD	Ald	$\mu \mathrm{g} \mathrm{L}{ }^{-1}$	0.29	0.044
	Ca	$\mu \mathrm{g} \mathrm{L}^{-1}$	0.22	0.143
	DOC	$\mathrm{mg} \mathrm{L}{ }^{-1}$	0.36	0.013
	pH	unit	0.19	0.190
	Water Temp.	${ }^{\circ} \mathrm{C}$	0.32	0.093
	F^{+}	$\mu \mathrm{g} \mathrm{L}^{-1}$	0.182	0.533
	$\mathrm{NO}_{3}{ }^{-}$	$\mu \mathrm{g} \mathrm{L}^{-1}$	0.600	0.142
	$\mathrm{SO}_{4}{ }^{2-}$		-0.037	0.876
BLB	Ald	$\mu \mathrm{g} \mathrm{L}{ }^{-1}$	0.03	0.852
	Ca	$\mu \mathrm{g} \mathrm{L}^{-1}$	0.17	0.238
	DOC	$\mathrm{mg} \mathrm{L}{ }^{-1}$	0.08	0.575
	pH	unit	0.07	0.622
	Water Temp.	${ }^{\circ} \mathrm{C}$	0.35	0.099
	F^{+}	$\mu \mathrm{g} \mathrm{L}^{-1}$	-0.036	0.901
	$\mathrm{NO}_{3}{ }^{-}$	$\mu \mathrm{g} \mathrm{L}^{-1}$	-0.109	0.708
	$\mathrm{SO}_{4}{ }^{2-}$		-0.184	0.468
CC	Ald	$\mu \mathrm{g} \mathrm{L}$	0.11	0.708
	Ca	$\mu \mathrm{g} \mathrm{L}^{-1}$	-0.22	0.451
	DOC	$\mathrm{mg} \mathrm{L}{ }^{-1}$	0.25	0.383
	pH	unit	-0.04	0.901
	Water Temp.	${ }^{\circ} \mathrm{C}$	0.67	0.174
	$\mathrm{F}+$	$\mu \mathrm{g} \mathrm{L}^{-1}$		
	$\mathrm{NO}_{3}{ }^{-}$	$\mu \mathrm{g} \mathrm{L}^{-1}$		
	$\mathrm{SO}_{4}{ }^{2-}$	$\mu \mathrm{g} \mathrm{L}^{-1}$		
KB	Ald	$\mu \mathrm{g} \mathrm{L}{ }^{-1}$	0.800	0.050
	Ca	$\mu \mathrm{g} \mathrm{L}^{-1}$	0.200	0.624
	DOC	$\mathrm{mg} \mathrm{L}{ }^{-1}$	0.800	0.050
	pH	unit	-0.200	0.624
	Water Temp.	${ }^{\circ} \mathrm{C}$	0.600	0.142
	$\mathrm{F}+$	$\mu \mathrm{g} \mathrm{L}^{-1}$	0.800	0.050
	$\mathrm{NO}_{3}{ }^{-}$	$\mu \mathrm{g} \mathrm{L}^{-1}$		

	$\mathrm{SO}_{4}{ }^{2-}$	$\mu \mathrm{g} \mathrm{L}{ }^{-1}$	-0.400	0.327
LR	Ald	$\mu \mathrm{g} \mathrm{L}^{-1}$	0.37	0.047
	Ca	$\mu \mathrm{g} \mathrm{L}{ }^{-1}$	0.24	0.226
	DOC	$m g L^{-1}$	0.25	0.189
	pH	unit	0.19	0.319
	Water Temp.	${ }^{\circ} \mathrm{C}$	0.02	0.937
	F+	$\mu \mathrm{g} \mathrm{L}^{-1}$		
	$\mathrm{NO}_{3}{ }^{-}$	$\mu \mathrm{g} \mathrm{L}^{-1}$	-0.333	0.348
	$\mathrm{SO}_{4}{ }^{2-}$	$\mu \mathrm{g} \mathrm{L}^{-1}$	0.105	0.801
MB	Ald	$\mu \mathrm{g} \mathrm{L}^{-1}$	0.739	0.001
	Ca	$\mu \mathrm{g} \mathrm{L}^{-1}$	-0.062	0.783
	DOC	$\mathrm{mg} \mathrm{L}^{-1}$	0.400	0.073
	pH	unit	-0.279	0.214
	Water Temp.	${ }^{\circ} \mathrm{C}$	0.125	0.580
	F+	$\mu \mathrm{g} \mathrm{L}^{-1}$	-0.028	0.917
	$\mathrm{NO}_{3}{ }^{-}$	$\mu \mathrm{g} \mathrm{L}^{-1}$	-0.182	0.533
	$\mathrm{SO}_{4}{ }^{2-}$	$\mu \mathrm{g} \mathrm{L}^{-1}$	-0.463	0.050
MPB	Ald	$\mu \mathrm{g} \mathrm{L}{ }^{-1}$	0.550	0.000
	Ca	$\mu \mathrm{g} \mathrm{L}{ }^{-1}$	0.580	0.000
	DOC	$\mathrm{mg} \mathrm{L}{ }^{-1}$	0.574	0.000
	pH	unit	-0.169	0.146
	Water Temp.	${ }^{\circ} \mathrm{C}$	0.280	0.016
	Runoff	$\mathrm{mm} \mathrm{day}{ }^{-1}$	-0.232	0.042
	F+	$\mu \mathrm{g} \mathrm{L}^{-1}$	0.239	0.042
	$\mathrm{NO}_{3}{ }^{-}$	$\mu \mathrm{g} \mathrm{L}{ }^{-1}$	0.190	0.160
	$\mathrm{SO}_{4}{ }^{2-}$	$\mu \mathrm{g} \mathrm{L}^{-1}$	-0.206	0.067
MR	Ald	$\mu \mathrm{g} \mathrm{L}{ }^{-1}$	0.459	0.000
	Ca	$\mu \mathrm{g} \mathrm{L}{ }^{-1}$	0.317	0.002
	DOC	$\mathrm{mg} \mathrm{L}^{-1}$	0.382	0.000
	pH	unit	0.097	0.362
	Water Temp.	${ }^{\circ} \mathrm{C}$	0.285	0.007
	RunOff	mm day ${ }^{-1}$	-0.108	0.291
	$\mathrm{F}+$	$\mu \mathrm{g} \mathrm{L}{ }^{-1}$	0.139	0.188
	$\mathrm{NO}_{3}{ }^{-}$	$\mu \mathrm{g} \mathrm{L}{ }^{-1}$	0.086	0.450
	$\mathrm{SO}_{4}{ }^{2-}$	$\mu \mathrm{g} \mathrm{L}{ }^{-1}$	-0.127	0.215
PMB	Ald	$\mu \mathrm{g} \mathrm{L}{ }^{-1}$	0.46	0.019

https://doi.org/10.5194/hess-2019-438
Preprint. Discussion started: 28 October 2019
(c) Author(s) 2019. CC BY 4.0 License.

Discussions

	Ca	$\mu \mathrm{g} \mathrm{L}^{-1}$	0.01	0.960
	DOC	$\mathrm{mg} \mathrm{L}{ }^{-1}$	0.21	0.295
	pH	unit	-0.23	0.232
	Water Temp.	${ }^{\circ} \mathrm{C}$	0.36	0.065
	F+	$\mu \mathrm{g} \mathrm{L}^{-1}$	-0.063	0.782
	$\mathrm{NO}_{3}{ }^{-}$	$\mu \mathrm{g} \mathrm{L}{ }^{-1}$	0.276	0.444
	$\mathrm{SO}_{4}{ }^{2-}$	$\mu \mathrm{g} \mathrm{L}^{-1}$	-0.293	0.135
UKR	Ald	$\mu \mathrm{LL} \mathrm{L}^{-1}$	0.34	0.071
	Ca	$\mu \mathrm{g} \mathrm{L}^{-1}$	0.38	0.053
	DOC	$\mathrm{mg} \mathrm{L} \mathrm{L}^{-1}$	0.32	0.086
	pH	unit	0.35	0.063
	Water Temp.	${ }^{\circ} \mathrm{C}$	0.14	0.621
	F+	$\mu \mathrm{g} \mathrm{L}^{-1}$		
	$\mathrm{NO}_{3}{ }^{-}$	$\mu \mathrm{g} \mathrm{L}{ }^{-1}$		
	$\mathrm{SO}_{4}{ }^{2-}$	$\mu \mathrm{g} \mathrm{L}{ }^{-1}$	-0.600	0.142

(C) Author(s) 2019. CC BY 4.0 License.

Table A5 R^{2} values for scatterplots of water chemistry relationships shown in Figure 3

Site	Season	Season Dates	Relationship	R^{2}
MR	S1	April-May	$\mathrm{Al}_{\mathrm{i}} \mathrm{pH}$	0.78131
MR	S2	June-Aug	$\mathrm{Al}_{\mathrm{i}} \mathrm{pH}$	0.27845
MR	S3	Sept-Feb	$\mathrm{Al}_{\mathrm{i}}-\mathrm{pH}$	0.04551
MR	S1	April-May	Al_{i}-DOC	0.48879
MR	S2	June-Aug	Al_{i}-DOC	0.51343
MR	S3	Sept-Feb	Al_{i}-DOC	0.0014
MR	S1	April-May	$\mathrm{Ali}_{i}-\mathrm{T}_{\mathrm{w}}$	0.42004
MR	S2	June-Aug	$\mathrm{Al}_{\mathrm{i}}-\mathrm{T}_{\mathrm{w}}$	0.03442
MR	S3	Sept-Feb	$\mathrm{Al}_{\mathrm{i}}-\mathrm{T}_{\mathrm{w}}$	0.08795
MR	S1	April-May	$\mathrm{Al}_{1}-\mathrm{Al}_{\mathrm{d}}$	0.66782
MR	S2	June-Aug	$\mathrm{Al}_{\mathrm{i}}-\mathrm{Al}_{\mathrm{d}}$	0.52313
MR	S3	Sept-Feb	$\mathrm{Al}_{\mathrm{i}}-\mathrm{Al}_{\mathrm{d}}$	0.0141
MR	S1	April-May	$\mathrm{Al}_{\mathrm{i}}-\mathrm{Ca}$	0.50399
MR	S2	June-Aug	$\mathrm{Al}_{\mathrm{i}}-\mathrm{Ca}$	0.37339
MR	S3	Sept-Feb	$\mathrm{Al}_{\mathrm{i}}-\mathrm{Ca}$	0.00009
MR	S1	April-May	$\mathrm{Al}_{\mathrm{i}}-\mathrm{Ca} / \mathrm{Al}_{\mathrm{d}}$	0.41377
MR	S2	June-Aug	$\mathrm{Al}_{\mathrm{i}}-\mathrm{Ca} / \mathrm{Al}_{\mathrm{d}}$	0.32486
MR	S3	Sept-Feb	$\mathrm{Al}_{\mathrm{i}}-\mathrm{Ca} / \mathrm{Al}_{\mathrm{d}}$	0.0382
MR	S1	April-May	$\mathrm{Al}_{\mathrm{i}} \mathrm{-}$ Q	0.0374
MR	S2	June-Aug	$\mathrm{Al}_{\mathrm{i}} \mathrm{-}$ Q	0.0703
MR	S3	Sept-Feb	$\mathrm{Al}_{\mathrm{i}} \mathrm{Q}$	0.0063

https://doi.org/10.5194/hess-2019-438
Preprint. Discussion started: 28 October 2019
(C) Author(s) 2019. CC BY 4.0 License.

MR	S1	April-May	$\mathrm{Al}_{\mathrm{d}}-\mathrm{Ca}$	0.55308
MR	S2	June-Aug	$\mathrm{Al}_{\mathrm{d}}-\mathrm{Ca}$	0.63892
MR	S3	Sept-Feb	$\mathrm{Ald}_{\mathrm{d}}-\mathrm{Ca}$	0.5074
MPB	S1	April-June	$\mathrm{Al}_{\mathrm{i}}-\mathrm{pH}$	0.00447
MPB	S2	July-Aug	$\mathrm{Al}_{\mathrm{i}} \mathrm{pH}$	0.21629
MPB	S3	Sept-Oct	$\mathrm{Al}_{\mathrm{i}}-\mathrm{pH}$	0.56
MPB	S1	April-June	Al_{i}-DOC	0.70785
MPB	S2	July-Aug	Al_{1}-DOC	0.43036
MPB	S3	Sept-Oct	Al_{i}-DOC	0.72722
MPB	S1	April-June	$\mathrm{Al}_{\mathrm{i}}-\mathrm{T}_{\mathrm{w}}$	0.72067
MPB	S2	July-Aug	$\mathrm{Al}_{\mathrm{i}}-\mathrm{T}_{\mathrm{w}}$	0.2356
MPB	S3	Sept-Oct	$\mathrm{Al}_{\mathrm{i}}-\mathrm{T}_{\mathrm{w}}$	0.4353
MPB	S1	April-June	$\mathrm{Al}_{\mathrm{i}}-\mathrm{Al}_{\mathrm{d}}$	0.67571
MPB	S2	July-Aug	$\mathrm{Al}_{\mathrm{i}}-\mathrm{Al}_{\mathrm{d}}$	0.4225
MPB	S3	Sept-Oct	$\mathrm{Al}_{\mathrm{i}}-\mathrm{Al}_{\mathrm{d}}$	0.65683
MPB	S1	April-June	$\mathrm{Al}_{1}-\mathrm{Ca}$	0.59175
MPB	S2	July-Aug	$\mathrm{Al}_{\mathrm{i}}-\mathrm{Ca}$	0.4214
MPB	S3	Sept-Oct	$\mathrm{Al}_{\mathrm{i}}-\mathrm{Ca}$	0.49111
MPB	S1	April-June	$\mathrm{Al}_{\mathrm{i}} \mathrm{Ca} / \mathrm{Al}_{\mathrm{d}}$	0.51142
MPB	S2	July-Aug	$\mathrm{Al}_{\mathrm{i}} \mathrm{Ca} / \mathrm{Al}_{\mathrm{d}}$	0.03067
MPB	S3	Sept-Oct	$\mathrm{Al}_{\mathrm{i}} \mathrm{Ca} / \mathrm{Al}_{\mathrm{d}}$	0.02961
MPB	S1	April-June	$\mathrm{Al}_{1}-\mathrm{Q}$	0.1734
MPB	S2	July-Aug	$\mathrm{Al}_{\mathrm{i}}-\mathrm{Q}$	0.0039
MPB	S3	Sept-Oct	$\mathrm{Al}_{\mathrm{i}}-\mathrm{Q}$	0.0004
MPB	S1	April-June	$\mathrm{Al}_{\mathrm{d}}-\mathrm{Ca}$	0.96289
MPB	S2	July-Aug	$\mathrm{Al}_{\mathrm{d}}-\mathrm{Ca}$	0.7685

https://doi.org/10.5194/hess-2019-438
Preprint. Discussion started: 28 October 2019
(c) Author(s) 2019. CC BY 4.0 License.

MPB	S3	Sept-Oct	Al $_{d}-\mathrm{Ca}$	0.72173

Table A6 Laboratory detection limit comparison.

Chemistry Parameter	Units	Value		
		HERC	Maxxam	AGAT
pH	$\mu \mathrm{g} \mathrm{L}{ }^{-1}$	n/a	n/a	n/a
DOC	$\mathrm{mg} \mathrm{L}{ }^{-1}$	n/a	0.50	n/a
TOC	$\mathrm{mg} \mathrm{L}{ }^{-1}$	n/a	n/a	0.5
SO_{4}	$\mu \mathrm{g} \mathrm{L} \mathrm{L}^{-1}$	10.00	n/a	2000
Al_{d}	$\mu \mathrm{g} \mathrm{L} \mathrm{L}^{-1}$	n/a	5.00	5
Al_{t}	$\mu \mathrm{g} \mathrm{L}{ }^{-1}$	n/a	5.00	5
Al_{0}	$\mu \mathrm{g} \mathrm{L} \mathrm{L}^{-1}$	n/a	5.00	5
$\mathrm{Cat}_{\text {t }}$	$\mu \mathrm{g} \mathrm{L} \mathrm{L}^{-1}$	n / a	$100 \mu \mathrm{~g} \mathrm{~L}{ }^{-1}$	$0.1 \mathrm{mg} \mathrm{L}^{-1}$
$\mathrm{Ca}_{\text {d }}$	$\mu \mathrm{g} \mathrm{L}^{-1}$	n/a	100	100

Appendix B. Figures

Figure B1 Timeseries of Al_{i} concentration between 22 April 2015 and 23 November 2018.

Figure B2 Time series of DOC concentration between 22 April 2015 and 23 November 2018

Figure B3 Time series of Al_{d} concentration between 22 April 2015 and 23 November 2018.

Figure B4 Time series of percentage $A l_{d}$ comprised of $A l_{o}$ for $M R$, compared to absolute value of $A l_{i}$ in ug L^{-1}.

Figure B5 Time series of percentage $A l_{d}$ comprised of $A l_{o}$ for $P M B$, compared to absolute value of $A l_{i}$ in ug L^{-1}.

Figure B6 Time series of percentage $A l_{d}$ comprised of $A l_{o}$ for MPB, compared to absolute value of $A l_{i}$ in ug L^{-1}.

Figure B7 Time series of percentage $A l_{d}$ comprised of Al_{o} for MB , compared to absolute value of $A l_{i}$ in ug L^{-1}.

(C) Author(s) 2019. CC BY 4.0 License.

Figure B8 Time series of percentage $A l_{d}$ comprised of $A l_{o}$ for $L R$, compared to absolute value of $A l_{i}$ in $u g L^{-1}$.

Figure B9 Time series of percentage $A l_{d}$ comprised of $A l_{o}$ for $U K R$, compared to absolute value of $A l_{i}$ in $u g L^{-1}$.

Figure B10 Time series of percentage $A l_{d}$ comprised of $A l_{o}$ for $B L B$, compared to absolute value of $A l_{i}$ in $u g L^{-1}$.
An Above Lime Doser

Figure B11 Time series of percentage $A l_{d}$ comprised of $A l_{o}$ for ALD, compared to absolute value of $A l_{i}$ in $u g L^{-1}$.

Keef Brook		
100		
90		
80		
70		
60		
50		
40		
30		
20		
10		
0		
Apr 2016	May 2016	Jun 2016

Figure B12 Time series of percentage Al_{d} comprised of Al_{0} for KB , compared to absolute value of Al_{i} in $u g \mathrm{~L}^{-1}$.
(c) Author(s) 2019. CC BY 4.0 License.

Figure B13 Time series of percentage $A l_{d}$ comprised of $A l_{o}$ for $C C$, compared to absolute value of $A l_{i}$ in ug L^{-1}

Figure B14 Least-squares linear regression of $A l_{i}$ versus $A l_{d}$ for each study site. One $A l_{i}$ outlier removed for $M R$ (value: $2 \mu \mathrm{~g}$ L-1, date: 30 April 2015).

Figure B15 Least-squares linear regression of Al_{i} versus Ca for each study site. One Al_{i} outlier removed for MR (value: $2 \mu \mathrm{~g}$ L-1, date: 30 April 2015). One Ca outlier for KB removed (value: $1110 \mu \mathrm{~g}$ L-1, date: 29 April 2016).

Figure B16 Least-squares linear regression of Al_{i} versus DOC for each study site. One Al_{i} outlier removed for MR (value: $2 \mu \mathrm{~g}$ L-1, date: 30 April 2015).

Figure B17 Least-squares linear regression of Al_{i} versus pH for each study site. One Al_{i} outlier removed for MR (value: $2 \mu \mathrm{~g} \mathrm{L-1}, \mathrm{date:} 30$ April 2015).

Figure B18 Least-squares linear regression of Al_{i} versus $\mathrm{SO}_{4}{ }^{2-}$ for each study site. One Al_{i} outlier removed for MR (value: $2 \mu \mathrm{~g}$ L-1, date: 30 April 2015).

Figure B19 Least-squares linear regression of Al_{i} versus T_{w} for each study site. One Al_{i} outlier removed for MR (value: $2 \mu \mathrm{~g}$ L-1, date: 30 April 2015).

Figure B20 Least-squares linear regression of Al_{i} versus runoff for each study site. One Al_{i} outlier removed for MR
(value: $2 \mu \mathrm{~g}$ L-1, date: 30 April 2015). One runoff outlier for MR removed (value: 17.294 mm day-1, date: 22 April 2015), and one runoff outlier for MPB removed (value: 34.994 mm day-1, date: 22 April 2015).

Appendix C. Scripts

C.1. Linear regression
"""Linear regression calculation script
:author: Lobke Rotteveel
:email: lobke.rotteveel@dal.ca """
\# Import modules
from scipy import stats import pandas as pd import csv
\# Import data
df $=$ pd.read_csv('Input.csv')
\# Run Mann Kendall test on site-variable groups and create table of results
results = []
results.append(['site_id', 'variable', 'tau', 'pvalue', 'slope', 'std error of slope'])
grouped $=$ df.groupby('Site')
for name, group in grouped:
chem_groups $=$ [group['Ald'], group['Ca'], group['DOC_TOC'], group['CalibpH'], group['Tw'], group['RunOff']]

> Ali = group['Ali']
for i in chem_groups:
pair $=\{$ 'i':i,'Ali':Ali $\}$
pair $=$ pd.DataFrame (pair)
pair $=$ pair.dropna()
if not pair.empty:
ken_tau = stats.kendalltau(pair['i'], pair['Ali'])
slope $=$ stats.linregress(pair['i'], pair['Ali'])
result_row $=[$ name, i.name, ken_tau.correlation, ken_tau.pvalue, slope.slope,
slope.stderr]
results.append(result_row)
with open('LinearRegression_Out.csv', 'w') as f :
writer $=\operatorname{csv}$. writer(f)
writer.writerows(results)
C.2. Laboratory comparison
"""Laboratory result comparison script
:author: Lobke Rotteveel
:email: lobke.rotteveel@dal.ca

```
"""
# Import modules
import pandas as pd
import numpy as np
import scipy as sp
from scipy import stats
import warnings
warnings.simplefilter('ignore', np.RankWarning)
# Importing data
df = pd.read_csv('SampDat_CompareInput_LimSur_171105_LR.csv', ',', header=0)
#print (df.head(n=5))
# Run comparisson
with open('SampData_Compare_LimSur.txt', 'w') as f:
    x = df.filter(regex='B_**').columns 
    for x_col, y_col in zip(x,y):
    Sig = sp.stats.wilcoxon(df[x_col],df[y_col])
    f.write('x: {}, y: { }, sig:{}\n'.format(x_col, y_col, Sig))
```


Appendix D. Additional methods

D. 1 Laboratory analysis methods

Samples were analyzed at Maxxam Analytics Laboratory, Health and Environmental Research Centre (HERC), and AGAT Laboratories. Samples from MR, MPB, PMB, MB, KB, and CC were analyzed at Maxxam and HERC labs only. Samples from BLB, ALD, UKR, and LR were analyzed at all three labs.

D1.1 Maxxam Laboratory
The protocol at Maxxam Laboratory in Bedford, NS, adheres to methods approved by the United States Environmental Protection Agency (US EPA) for identifying trace elements in water (US EPA, 1994) and analyzing samples using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) (US EPA, 1998). Cations and anions were analyzed using ICP-MS, while a Continuous Flow Analyzer was used to measure DOC. pH was measured using a standard hydrogen electrode and reference electrode.

D1.2 HERC Laboratory

$\mathrm{SO}_{4}{ }^{2-}$ samples were analyzed at HERC Laboratory in Halifax, NS, due to lower detection limits at the Maxxam laboratory. Once delivered to the laboratory, samples were filtered using a $0.45 \mu \mathrm{~m}$ glass fiber filter and analyzed using an Ion-Chromatography System (ICS) 5000 Dionex detector.

D1.3 AGAT Laboratory
Samples collected in the West River, Sheet Harbour area (UKR, ALD, LR, BLB, KB, CC) were analyzed at the AGAT laboratory in Dartmouth, NS. This laboratory holds the

9001:2015 and 17025:2005 International Organization for Standardization accreditations. Cation samples were analyzed using ICP-MS, laboratory pH was measured using a standard hydrogen electrode and reference electrode, and $\mathrm{SO}_{4}{ }^{2-}$ and anions were measured using ICS. Samples analyzed at AGAT were analyzed for total organic carbon (TOC) as opposed to DOC and were analyzed using Infrared Combustion (IR Combustion).
D. 2 Data quality assurance and control

Blanks were used to assess contamination during the Al_{o} extraction procedure. Blanks were collected on 10% of samples, taken on arbitrary sampling events. Triple deionized water was collected before passing through filter and column ("Blank Before"), and after ("Blank After"). The triple-deionized water had traces of chemicals below the laboratory detection limits, providing "Not Detectable" results for the Blank Before sample. If chemicals were detected in the Blank After sample, this would have indicated leaching of chemicals from the column.

Duplicates were collected and analyzed for 10% of the samples; on arbitrarily selected sampling events, Al_{o} and $\mathrm{Al}_{\text {filtered }}$ or $\mathrm{Al}_{\text {unfiltered }}$, were analyzed twice, independently, by Maxxam laboratory. All laboratories also conducted additional duplicate, blank, reference material, and matrix spike testing, in addition to instrument calibration in adherence to industry standards for quality control and assurance.

To verify that sample analysis results from the Maxxam/HERC laboratory combination were comparable to AGAT, three sets of duplicate samples were collected for ALD, BLB, UKR, and LR (19 April 2017, 14 May 2017, and 30 May 2017) and analyzed by both laboratories. Laboratory results were compared using Wilcoxon Rank Sum statistical test in Python 3.6.5 using the SciPy Stats module (version 0.19) (Appendix C.2). Results indicated a significant difference in pH values between laboratories ($\mathrm{T}=1, \mathrm{p}=0.04$), therefore, statistical analysis on
pH data was conducted on the calibrated YSI Pro Plus sonde field data. $\mathrm{Al}_{o}, \mathrm{Al}_{\text {filtered }}$, and $\mathrm{Al}_{\text {unfiltered }}$ results were found to be comparable between laboratories $(\mathrm{T}=8.5, \mathrm{p}=0.674 ; \mathrm{T}=5.0$, $\mathrm{p}=0.249$; and $\mathrm{T}=8.0, \mathrm{p}=0.600$, respectively). After adjusting for detection limits (Table A6), Ca results were also found to be comparable between laboratories $(T=4.0, \mathrm{p}=0.173)$. However, due to the large difference in $\mathrm{SO}_{4}{ }^{2-}$ detection limits between HERC and AGAT $\left(10 \mu \mathrm{~g} \mathrm{~L}^{-1}\right.$ and 2 $\mathrm{mg} \mathrm{L}{ }^{-1}$, respectively, results for $\mathrm{SO}_{4}{ }^{2-}$ are not comparable between laboratories. Lastly, organic carbon analyzed at Maxxam was analyzed for DOC, while AGAT analyzed for TOC, therefore these results cannot be compared. For dates where duplicate data is present, AGAT data was used to maintain data source consistency, apart from $\mathrm{SO}_{4}{ }^{2-}$ data, for which HERC data was used due to superior detection limits. Analysis for BLB and ALD transitioned from Maxxam to AGAT 19 April 2017 and consequently DOC is approximated as TOC for these two sites after this date.

The YSI Pro Plus sonde was calibrated within 36 hours of in-stream data collection.

D. 3 Toxic thresholds of Al_{i}

Identified toxic thresholds of Al_{i} for Salmo salar vary in the literature. Based on toxicological and geochemical studies on Al and Salmo salar, the EIFAC suggested an Al_{i} toxic threshold of $15 \mathrm{ug} \mathrm{L}^{-1}$ for Atlantic salmon in freshwaters for pH between 5.0 and 6.0 , and 30 ug L^{-1} in $\mathrm{pH}<5$ (Howells et al., 1990). The lower threshold at higher pH is to account for the increased fraction in the $\mathrm{Al}(\mathrm{OH})_{2}{ }^{+}$species. At $\mathrm{pH}>6$, the toxic effects of Al_{i} to Salmo salar are considered negligible, and toxic effects are dominated by other dissolved and precipitated forms (Gensemer et al., 2018), due to the decreased solubility of Al at $\mathrm{pH}>6$ (Dennis and Clair 2012). However, in colder rivers, the pH-toxicity threshold may be higher, closer to pH 6.5 (Lydersen,
1990). For the purposes of this study, we use the toxic threshold of Al_{i} at $15 \mathrm{ug} \mathrm{L}^{-1}$, as the majority of our pH observations were greater than or equal to 5.0 (Table A2).
D. 4 Calibration of pH measurements

In situ pH measurements were taken using a YSI Pro Plus sonde and confirmed with a YSI Ecosense pH Pen. It was found that measurements taken with the YSI Pro Plus sonde deviated from the YSI Ecosense Pen, which is known to measure pH accurately $(0.47 \pm 0.44 \mathrm{pH}$ units below in-stream pH as measured by YSI Ecosense Pen). Therefore, a calibration curve was created based on simultaneous side-by-side measurements of both instruments ($\mathrm{n}=69$ pairs) and the in situ pH data were adjusted accordingly (Eq. 1).

$$
\begin{equation*}
\text { YSI Ecosense Pen } p H=0.595(\text { Pro Plus } p H)+2.3868 \tag{1}
\end{equation*}
$$

