

1	Ionic aluminium concentrations exceed thresholds for
2	aquatic health in Nova Scotian rivers
3	
4	Shannon Sterling ¹ , Sarah MacLeod ² , Lobke Rotteveel ¹ , Kristin Hart ¹ , Thomas A. Clair ¹ ,
5	Edmund A. Halfyard ³
6	
7	¹ Sterling Hydrology Research Group, Department of Earth Sciences, Dalhousie University,
8	Halifax, Nova Scotia, Canada
9	² Coastal Action, Lunenburg, Nova Scotia, Canada
10	³ Nova Scotia Salmon Association, Chester, Nova Scotia, Canada
11	
12	Correspondence to: Shannon Sterling (shannon.sterling@dal.ca)
13	
14	
15	
16	
17	
18	
19	
20	

21

22	Abstract. Cationic aluminium species are toxic to terrestrial and aquatic life. Despite decades of acid
23	emission reductions, accumulating evidence shows that freshwater acidification recovery is delayed in
24	locations such as Nova Scotia, Canada. Further, spatial and temporal patterns of labile cationic forms
25	of aluminium (Al _i) remain poorly understood. Here we increase our understanding of Al _i spatial and
26	temporal patterns by measuring Al _i concentrations in ten streams in acid-sensitive areas of Nova
27	Scotia over a four-year time period. We observe widespread and frequent occurrences of $\ensuremath{Al}\xspace_i$
28	concentrations that exceed toxic thresholds (>15 μ g L ⁻¹). Al _i patterns appear to be driven by known
29	Ali drivers - pH, dissolved organic carbon, dissolved aluminium, and calcium - but the dominant
30	driver and temporal patterns vary by catchment. Our results demonstrate that elevated Al_i remains a
31	threat to aquatic ecosystems. For example, our observed Al_i concentrations are potentially harmful to
32	the biologically, economically, and culturally significant Atlantic salmon (Salmo salar).
33	

34 1 Introduction

Freshwater acidification caused elevated concentrations of cationic aluminium (Al_i) at the end of the last century that led to increased freshwater and marine mortality and, ultimately, the extirpation of native Atlantic salmon (*Salmo salar*) populations in many rivers (Rosseland et al., 1990), for example in Scandinavia (Henriksen et al., 1984, Hesthagen and Hansen, 1991), the eastern USA (Monette and McCormick, 2008, Parrish et al., 1998), and Nova Scotia, Canada (Watt, 1987). Following reductions in anthropogenic sulfur emissions in North America and Europe since the 1990s, many rivers showed steady improvements in annual average stream chemistry (Evans et al., 2001, Monteith et al., 2014,

42 Skjelkvåle et al., 2005, Stoddard et al., 1999, Warby et al., 2005), including reduced concentrations of 43 Al_i in the USA (Baldigo and Lawrence, 2000, Buchanan et al., 2017, Burns et al., 2006) and Europe 44 (Beneš et al., 2017, Davies et al., 2005, Monteith et al., 2014). However, recent evidence highlights 45 delayed recovery from acidification in some areas (Houle et al., 2006, Warby et al., 2009, Watmough 46 et al., 2016), including SWNS (Clair et al., 2011), raising concerns about elevated Al_i concentrations.

47 Aluminium (Al) toxicity can be caused by both precipitated and dissolved forms in circumneutral waters (Gensemer et al., 2018); however, the cationic species of Al, such as Al³⁺, 48 $Al(OH)_2^{1+}$, and $Al(OH)^{2+}$ are considered to be the most labile and toxic to salmonids as they bind to the 49 50 negatively charged fish gills causing morbidity and mortality through suffocation (Exley et al., 1991), 51 reducing nutrient intake at gill sites, and altering blood plasma levels (Nilsen et al., 2010). Further, the effects of sub-lethal exposure to freshwater Al elicits osmoregulatory impairment (Monette and 52 McCormick, 2008, Regish et al., 2018) which reduces survival in the hypertonic marine environment 53 54 (McCormick et al., 2009, Staurnes et al., 1996). Elevated concentrations of Ali are also toxic to other freshwater and terrestrial organisms (Boudot et al., 1994, Wauer and Teien, 2010), such as frogs and 55 56 aquatic birds (Lacoul et al., 2011).

57 Al speciation varies with pH (Helliweli et al., 1983, Lydersen, 1990), where positive Al species 58 dominate over neutral and negative species below pH 6.3 at 2 °C and below pH 5.7 at 25 °C (Lydersen, 1990), with the most toxic Al species, $Al(OH)_2^{+1}$ (Helliweli et al., 1983) dominating Al speciation 59 between pH 5.0–6.0 at 25 °C, and 5.5–6.5 at 2 °C (Lydersen, 1990). Thus, the toxicity of Al increases 60 61 with increased pH up to the formation of gibbsite (Schofield and Trojnar, 1980). Additionally, colder waters will have a higher proportion of toxic species at higher pH values than warmer waters (Driscoll 62 and Schecher, 1990). The bioavailability of Al is reduced by the presence of calcium (Ca) (Brown, 63 64 1983), which can occupy the negatively charged gill sites, and dissolved organic carbon (DOC), which

occludes Al_i through the formation of organo-Al complexes (Al_o) that are nontoxic to fish (Erlandsson
et al., 2010).

67 Despite being the most common metal on Earth's crust, Al is usually immobilized in clays or 68 hydroxide minerals in soils. Rates of Al release into soil water from soil minerals increase with three drivers: 1) low soil pH, 2) low soil base saturation, and 3) high soil DOC concentrations. Lowered pH 69 70 increases Al solubility and observations confirm that Al_i concentrations are negatively correlated with 71 pH (Campbell et al., 1992, Kopáček et al., 2006). Low levels of base saturation can cause charge 72 imbalances resulting in the release of Al into soil waters from clay particles, and later into drainage waters (Fernandez et al., 2003) and chronic acidification thus shifts available exchangeable cations in 73 74 the soil from Ca and magnesium (Mg) towards Al (Schlesinger and Bernhardt, 2013, Walker et al., 75 1990). Higher concentrations of DOC in soil water increase the release of Al through two mechanisms: 76 1) as an organic acid, DOC decreases soil pH, thus increasing Al release (Lawrence et al., 2013), and 77 2) by forming organic complexes with Al_i it maintains a negative Al concentration gradient from the 78 cation exchange sites to the soil water, increasing rates of Al release (Edzwald and Van Benschoten, 79 1990, Jansen et al., 2003). Field studies confirm Al concentrations to be positively correlated with DOC 80 (Campbell et al., 1992, Kopáček et al., 2006) although at higher concentrations of DOC, Al may be organic-complexed and less toxic to aquatic organisms (Witters et al., 1990). 81

Once mobilized in soil waters, export of Al_i to drainage waters requires anions to maintain charge balance. Storm events have been shown to increase Al_i export due to added anions (e.g., Cl⁻, $SO_4^{2^-}$, F⁻), and from the movement of flow paths to shallower soil horizons where more Al may be available for transport. For example, from 1983 to 1984, Al concentrations for the River Severn in Wales increased ten-fold during the stormflow peak compared to the baseflow (Neal et al., 1986).

However, the association of increased Al_i concentrations with storm flow is not consistent in the
literature (DeWalle et al., 1995, McKnight and Bencala, 1988).

Annual patterns of Al_i typically show a peak, but the timing of the peak varies. In some areas, Al_i concentrations peak in the spring and winter, correlated with flow peaks, such as in Quebec (Campbell et al., 1992), Russia (Rodushkin et al., 1995), and along the Czech-German border (Kopacek et al., 2000, Kopáček et al., 2006). In other areas, Al concentrations were found to be higher in the summer such as in Virginia, USA (Cozzarelli et al., 1987). If the timing of peak Al_i concentrations coincides with sensitive stages of aquatic organisms, the potential for large biological impacts is high.

Our understanding of spatial and temporal trends of Al_i is limited by the relative paucity of samples: Al_i is not measured as part of standard analyses. Our understanding is also limited by the difficulty in comparing the wide variety of methods for estimating Al_i; different definitions, often operational, of toxic Al include inorganic Al, inorganic monomeric Al, labile Al, Al³⁺, and cationic Al (Table A1). Definitions for both inorganic monomeric Al and cationic Al include all positively charged species of Al.

101 Acid sensitive areas of NS, here abbreviated as NS_A (see Clair et al., 2007), with once-famous 102 wild Atlantic salmon populations, were heavily impacted by acid deposition at the end of the last 103 century, which originated from coal burning in central Canada and Northeastern USA (Hindar, 2001, 104 Summers and Whelpdale, 1976). NS_A catchments are particularly sensitive to acid deposition due to 105 base cation-poor and slowly weathering bedrock that generates thin soils with low acid neutralizing 106 capacity (ANC), extensive wetlands, and episodic sea salt inputs (Clair et al., 2011, Freedman and Clair, 107 1987, Watt et al., 2000, Whitfield et al., 2006). A 2006 fall survey found that Ali concentrations in NS exceeded the 15 μ g L⁻¹ toxic threshold suggested by the European Inland Fisheries Advisory Council 108 109 (EIFAC) for aquatic health in seven of 42 rivers surveyed (Dennis and Clair, 2012). However, apart

- 110 from this study, little is known about the regional extent and patterns of Al_i . Here, we aim to increase
- 111 our understanding of current Al_i spatial and temporal patterns in relation to toxic thresholds, and to
- 112 identify potential drivers by conducting a four-year survey of Al_i concentrations in ten streams across
- 113 acid-sensitive areas of NS, Canada.

114 2 Materials and methods

115 **2.1 Study area**

116 We surveyed Al_i concentrations at ten study catchments in NS_A, ranging from headwater to 117 higher-order systems: Mersey River (MR), Moose Pit Brook (MPB), Pine Marten Brook (PMB), Maria 118 Brook (MB), Brandon Lake Brook (BLB), above the West River lime doser (ALD), Upper Killag River 119 (UKR), Little River (LR), Keef Brook (KB), and Colwell Creek (CC) (Table 1, Fig. 1 and 2). Our study 120 catchments are predominantly forested, draining slow-weathering, base-cation poor bedrock, producing 121 soils with low ANC (Langan and Wilson, 1992, Tipping, 1989). The catchments also have relatively 122 high DOC concentrations (Ginn et al., 2007) associated with the abundant wetlands in the region (Clair 123 et al., 2008, Gorham et al., 1986, Kerekes et al., 1986).

124 **2.2 Data collection and analysis**

- We measured Al_i concentrations at three of the ten catchments from April 2015 to September
 2017 (MR, MPB, PMB), on a weekly to monthly frequency during the snow free season (approximately
- 127 April to November, Table A2). In 2016-2018, seven sites were added and sampled every two weeks to
- 128 monthly during the snow-free season.

129	Ali sampling events comprise grab samples for lab analysis and in situ measurements of pH and
130	water temperature (Tw). We calculate Ali as the difference between dissolved Al (Ald) and Alo following
131	Dennis and Clair (2012) and Poléo (1995) (Eq. 1), separating the species in the field to reduce errors
132	caused by changes in temperature and pH in transport from field to lab.

 $Al_i = Al_d - Al_o \tag{1}$

Al_d is measured as the Al concentration of a filtered sample and Al_o is measured as the eluate from passing filtered water through a 3 cm negatively charged cation exchange column (Bond Elut Jr. Strong Cation Exchange Column). Samples were passed through the cation exchange column at a rate of approximately 30 to 60 drops per minute. From this method, Al_o is operationally defined as the nonlabile, organically-complexed metals and colloids, and Al_i is defined as the positive ionic species of Al (e.g., Al³⁺, Al(OH)²⁺, and Al(OH)₂⁺).

Stream chemistry samples (50 ml) were collected using sterilized polyethylene syringes into sterilized polyethylene bottles. Samples for sulfate (SO_4^{2-}) analysis were not filtered. Trace metal samples were filtered (0.45 µm) and preserved with nitric acid (HNO₃). Samples for DOC analysis were filtered (0.45 µm) and transported in amber glass bottles containing sulfuric acid preservative (H₂SO₄) to prevent denaturation. All samples were cooled to 7 °C during transport to the laboratories. Samples were delivered to the laboratories within 48 hours of collection, where they were further cooled to \leq 4°C prior to analysis (Appendix D).

We examined correlations between Al_i and water chemistry parameters: Al_d , Ca, DOC, pH, SO₄²⁻, T_w, fluoride (F⁻), nitrate (NO₃⁻), and runoff (where data are available). Correlations were analysed within and across sites. For the purposes of this study, we use the toxic threshold of Al_i at 15 ug L⁻¹, as the majority of our pH observations were greater than or equal to 5.0 (Table A2, Appendix D3).

151 3 Results and discussion

152 **3.1 Patterns of Al**_i

Al_i concentrations exceed toxic levels (15 ug L^{-1}) at all sites during the study period (Table A2). 153 154 Sites in the eastern part of the study area have the highest proportion of samples exceeding threshold 155 levels, including one site with 100% of samples in exceedance (Fig. 1). Mean Al_i concentrations across all sites range from 13–60 ug L^{-1} (Table 1), with the highest mean concentrations also occurring in the 156 eastern part of the study area (Fig. 2). Al_i concentrations exceed 100 ug L^{-1} (approximately seven times 157 158 the threshold) at three sites (Table A2). In the sites with the longest and most frequent data collection 159 (MR and MPB), Al_i concentrations exceed the toxic threshold in consecutive samples for months at a 160 time, particularly in the late summer (Fig. B1). Our Al_i concentrations are consistent with the 6.9–230 ug L⁻¹ range of Al_i concentrations measured across NS by Dennis and Clair (2012) and are higher than 161 162 concentrations measured in Norway from 1987–2010 (5–30 ug L^{-1}) (Hesthagen et al., 2016).

The percent of Al not complexed by DOC (% Ali/Ald) ranges from a minimum of 0.6% to a 163 164 maximum of 50%, with a median value of 10.7%, across all sites. These findings are similar to those 165 found NS by Dennis and Clair (2012) of the proportion of Al_i in total aluminum (Al_t) (min. = 4%, max. 166 = 70.1%, med. = 12.4%), and less than those found by Lacroix (1989) (over 90 % Al_o/Al_d). T_w and pH 167 have a significant positive correlation with Al_i/Al_d (Table A3), consistent with an earlier observation 168 that Al toxicity increases with pH (Schofield and Trojnar, 1980). However, even when the percentage 169 of Al_i/Al_d is low, Al_i concentrations remain well above thresholds for toxicity (Fig. B4-B13). Previous 170 studies show Ali/Ald is low during baseflow (Bailey et al., 1995, Murdoch and Stoddard, 1992, 171 Schofield et al., 1985), similar to our findings (Figs. B4-B13); more consistent year-round sampling is 172 needed to obtain a better picture of seasonal patterns in Al speciation in NSA.

173 **3.2 Potential Al**_i drivers

174 Al_d is significantly ($\alpha = 0.05$) and positively correlated with Al_i in seven of the ten study sites (ALD, KB, LR, MB, MPB, MR, PMB) (Fig. 3, Table A4), despite the high concentrations of DOC. Ali 175 176 is also significantly and positively correlated with DOC in four sites (ALD, KB, MPB, MR) (Fig. 3, 177 Table A4), consistent with other studies (Campbell et al., 1992, Kopáček et al., 2006). The positive 178 correlation between DOC and Al_i concentrations may suggest that the ability of DOC to mobilize Al_d 179 in soils is stronger than its ability to occlude Al_i in streamwaters. 180 Ca is significantly and positively correlated with Ali at two sites (MPB, MR) (Fig. 3, Table A4). 181 The positive relationship between Ca and Al_i is the opposite of expectations. We hypothesize that this 182 is due to the two study sites having very low Ca concentrations (mean concentrations below 1 mg L^{-1}), 183 below which soil water Ca concentrations are too low to retard Al release. T_w is also significantly 184 positively correlated with Al_i at two sites (MR, MPB) (Fig. 3, Table A4), likely reflective of the 185 temperature-related drivers of Al concentration and speciation. Runoff is significantly and negatively 186 correlated with Al_i at one site MPB (Fig. 3, Table A4). Runoff data are available for only two of the 187 study sites (MR, MPB) and so more runoff data are needed to improve our understanding of the relation 188 between runoff and Ali in NSA.

We did not observe the negative association between pH and Al_i observed in previous studies (Campbell et al., 1992, Kopáček et al., 2006). pH is negatively correlated with Al_i in four out of ten sites, but none of these relationships are statistically significant (Fig. 3, Table A4). We did observe a statistically significant positive relationship between pH and Al_i/Al_d; thus it seems that pH may play a more important role in determining the proportion of different Al species rather than the absolute value of Al_i present in streamwaters.

F⁻ has also been found to be a complexing agent that affects the speciation of Al at low pH levels and relatively high concentrations of F⁻ (>1 mg L⁻¹) (Berger et al., 2015). The concentrations of F⁻ at the study sites are mostly below this threshold (mean across all sites = 0.045 mg L⁻¹); however, there is still a significant positive effect of F⁻ on Al_i concentrations across at two sites (KB, MPB) (Fig. 3, Table A4). NO₃⁻ and SO₄²⁻ are also potential complexing ligands of Al; however, we did not observe any correlation between Al_i and either of these parameters, except for a significant negative correlation between SO₄²⁻ and Al_i at MB.

202 The highest concentrations of Al_i observed (> 100 ug L⁻¹) often occurred in early summer (late 203 June or early July in 2016-2018) when Al_d, Ca, and DOC concentrations had not yet reached their 204 annual peak (Table A2). The spring/summer extreme events occurred among the first exceptionally 205 warm days (> 21 °C) of the year, in dry conditions, and when the proportion of Al_o/Al_d was low 206 (lowering to approximately 60-70% from higher levels of around 80-90%) (Figs. B4-B13). pH was not 207 abnormally low during these events (ranging from 4.8 to 6.13), Ca concentrations were low (less than 208 or equal to 800 μ g L⁻¹) and DOC concentrations ranged from 15–21 mg L⁻¹. The observed peak in Al_i 209 concentrations during times of lower discharge contrasts with studies that found higher Ali 210 concentrations during higher flow (Campbell et al., 1992, Kopacek et al., 2000, Neal et al., 1986, 211 Rodushkin et al., 1995). Further research is required to test hypotheses on why high Al_i coincides with 212 high DOC and low flow periods.

213 3.3 Possible seasonal groupings of Al_i in NS_A

In the two sites with the most samples, MPB and MR, groupings of data are visible that are temporally contiguous, potentially indicating seasonally-dependent Al_i behavior (Fig. 4). This is supported by stronger linear correlations (r^2) among variables when grouped by "season" (Table 2); for

example, for the correlation between pH and Al_i at MR, r^2 improves from 0.02 for year-round data (Fig. B17) to up to 0.78 in season 1 (Fig. 4). The transition dates between the seasons are similar for the two catchments, but not the same (Table A2), and vary by year. Here we propose initial characterization of the potential "seasons"; more research is needed to test these hypotheses on seasonal divisions and their drivers using larger datasets and Generalized Linear Mixed Model analysis to test for statistical significance among the potential seasonal groupings.

223 Season 1 (approximately April/May) is coincident with snow-melt runoff and is characterized 224 by relatively low concentrations of Al_i (2-46 ug L⁻¹), low pH (4.5-5.3), and lower concentrations of 225 most constituents, including DOC, and cold temperatures (4 °C). During this season, Ali is strongly 226 coupled with pH, DOC, Ald and Ca in MR, but less so in MPB. A possible explanation is that season 1 227 is dominated by snowmelt hydrology in which cation exchange between soil and discharge occurs less 228 efficiently, which has been attributed to ice and frozen soil potentially limiting water contact time with 229 soil (Christophersen et al., 1990). The onset of season 2 (approximately late June) is characterized by 230 increasing Al_i concentrations, temperature, and DOC. Al_i and pH values are higher in this season and 231 Al_i becomes strongly negatively correlated with pH as pH increases to the lower threshold for gibbsite. 232 In MR in season 2 Ali has a strong positive relationship with DOC. The highest observed Ali 233 concentrations of the year occur in season 2 (Fig. 4). Al_i relations are weak in MR in season 3 234 (approximately September through March), likely due to the lower frequency of measurements during 235 the winter. Season 3 in MR has the highest concentrations of dissolved constituents (Al_d, Ca, and DOC), 236 whereas in MPB only Ca has the highest concentrations.

237 **3.4 Ecological implications**

238 While the summer peak in Al_i that we observed in NS_A does not coincide with the smoltification period, when salmon transition from part to smolt and are highly sensitive to Al exposure (Kroglund et 239 240 al., 2007, Monette and McCormick, 2008, Nilsen et al., 2013), continued exposure throughout the year 241 may still negatively affect salmon populations, as accumulation of Al_i on gills reduces salmon marine 242 and freshwater survival (Kroglund et al., 2007). Further, Al_i concentrations as low as 20 ug L⁻¹ may 243 impair marine survival without reducing freshwater survival (Kroglund and Staurnes, 1999, Staurnes 244 et al., 1996), contributing to the observation that marine threats are driving population declines of 245 Atlantic Salmon (e.g. Gibson et al., 2011). In addition, as the higher Al_i concentrations appear to be 246 driven – at least in part – by lower flow in the summer months, increases in the length and severity of 247 droughts and heat-waves due to climate change may further increase Al_i concentrations and exacerbate 248 Al_i effects on aquatic life. Increases in Al have already been observed across areas previously affected 249 by freshwater acidification (Sterling et al., in prep.).

For example, because many peak Al_i concentrations occur on the first exceptionally warm day in late spring, the peaks may be exacerbated with springtime warming associated with climate change. As warm days begin to occur earlier in the season, there may be increasing chance of the peak Al_i concentrations overlapping with smoltification season and emergence of salmon fry; both considered the most vulnerable life stages of Atlantic salmon (e.g., Farmer, 2000), although the phenology of the smolt run is expected to similarly advance earlier in the year.

256 4 Conclusions

- Our study reveals that widespread and persistent toxic concentrations of Al_i in NS_A freshwaters
 pose a risk to aquatic, and potentially terrestrial, life. Previously, high DOC concentrations were
 presumed to protect aquatic life against Al_i; our study shows that this presumption does not hold.
 Our results suggest that the recent 88 to 99% population decline of the Southern Uplands
 Atlantic salmon population in NS_A (Gibson et al., 2011) may be partially attributable to Al_i, in contrast
- to earlier studies which downplayed the role of Al_i in Atlantic salmon mortality (Bowlby et al., 2013,

Lacroix and Townsend, 1987). These high Al_i concentrations in NS_A highlight the need to increase our understanding of the influence of Al_i on both terrestrial and aquatic ecosystems, and its implications for biodiversity.

The catchments with the highest Al_i levels had particularly low Ca levels, raising concerns as Ca is protective against Al_i toxicity, and highlighting coincident threats of Ca depletion and elevated Al. Recent work has identified globally widespread low levels and declines in Ca (Weyhenmeyer et al., 2019), raising the question of what other regions may also have Al_i levels exceeding toxic thresholds.

The serious potential consequences Al_i highlight the importance for actions to further reduce acid emissions and deposition, as critical loads are still exceeded across the province (Keys, 2015), and to adapt forest management practices to avoid base cation removal and depletion. Addition of base cations through liming and enhanced weathering of soils and freshwaters may accelerate recovery from acidification.

275

276 Data availability

277 Readers can access our data from HydroShare supported by CUASHI, a FAIR-aligned data
 278 repository (<u>https://www.re3data.org/</u>).

279 Author contribution

280 SS conceived the idea and led the writing of the MS. SM led the field data collection. SM and

281 TAC designed the protocol for Al_i sampling, assisted with data analysis and helped with the writing.

282 LR performed spatial and statistical analysis, produced figures, and assisted with sample collection

and draft writing. KH assisted with data analysis, figure production and editing and contributed to the

284 draft. TAC provided information on analytical and field sampling methods, and selection of sampling

sites. EAH contributed field samples, assisted with data analysis and contributions to the manuscript.

286 Competing interests

287 The authors declare that they have no conflict of interest.

288 Acknowledgements

289 The Atlantic Salmon Conservation Foundation, Atlantic Canada Opportunities Agency, the

290 Nova Scotia Salmon Association, and Fisheries and Oceans Canada provided financial support for the

291 field data collection and the laboratory analyses. Marley Geddes, Siobhan Takla, Franz Heubach,

292 Lorena Heubach, Emily Bibeau and Ryan Currie provided field assistance.

293

294 References

295	Bailey, S. W., Driscoll, C. T. and Hornbeck, J. W.: Acid-base chemistry and aluminum
296	transport in an acidic watershed and pond in New Hampshire, Biogeochemistry, 28, 69-91, 1995.
297	Baldigo, B. P. and Lawrence, G. B.: Composition of fish communities in relation to stream
298	acidification and habitat in the Neversink River, New York, Trans. Am. Fish. Soc., 129, 60-76, 2000.
299	Beneš, F., Horecký, J., Senoo, T., Kamasová, L., Lamačová, A., Tátosová, J., Hardekopf, D.
300	W. and Stuchlík, E.: Evidence for responses in water chemistry and macroinvertebrates in a strongly
301	acidified mountain stream, Biologia, 72, 1049-1058, 2017.
302	Berger, T., Mathurin, F. A., Gustafsson, J. P., Peltola, P. and Åström, M. E.: The impact of
303	fluoride on Al abundance and speciation in boreal streams, Chem. Geol., 409, 118-124, 2015.
304	Boudot, J. P., Becquer, T., Merlet, D. and Rouiller, J.: Aluminium toxicity in declining
305	forests: a general overview with a seasonal assessment in a silver fir forest in the Vosges mountains
306	(France), in: Annales des sciences forestières, 1994.
307	Bowlby, H. D., Horsman, T., Mitchell, S. C. and Gibson, A.: Recovery potential assessment
308	for southern upland atlantic salmon: habitat requirements and availability, threats to populations, and
309	feasibility of habitat restoration, DFO Canadian Science Advisory Secretariat, 2013.
310	Brown, D.: Effect of calcium and aluminum concentrations on the survival of brown trout

311 (Salmo trutta) at low pH, Bull. Environ. Contam. Toxicol., 30, 582-587, 1983.

312	Buchanan, C., Smith, Z. and Nagel, A.: Long-Term Water Quality Trends in USEPA Region 3
313	(Mid-Atlantic), 2017.

- 314 Burns, D. A., McHale, M. R., Driscoll, C. T. and Roy, K. M.: Response of surface water
- 315 chemistry to reduced levels of acid precipitation: comparison of trends in two regions of New York,
- 316 USA, Hydrological Processes: An International Journal, 20, 1611-1627, 2006.
- 317 Campbell, P. G., Hansen, H. J., Dubreuil, B. and Nelson, W. O.: Geochemistry of Quebec

318 north shore salmon rivers during snowmelt: organic acid pulse and aluminum mobilization, Can. J.

- 319 Fish. Aquat. Sci., 49, 1938-1952, 1992.
- 320 Christophersen, N., Vogt, R. D., Neal, C., Anderson, H. A., Ferrier, R. C., Miller, J. D. and

321 Seip, H. M.: Controlling mechanisms for stream water chemistry at the Pristine Ingabekken Site in

- 322 mid-Norway: Some implications for acidification models, Water Resour. Res., 26, 59-67, 1990.
- 323 Clair, T. A., Dennis, I. F., Vet, R. and Laudon, H.: Long-term trends in catchment organic
- 324 carbon and nitrogen exports from three acidified catchments in Nova Scotia, Canada,
- 325 Biogeochemistry, 87, 83-97, 2008.
- Clair, T. A., Dennis, I. F., Scruton, D. A. and Gilliss, M.: Freshwater acidification research in
 Atlantic Canada: a review of results and predictions for the future, Env. Rev., 15, 153-167, 2007.
- Clair, T. A., Dennis, I. F. and Vet, R.: Water chemistry and dissolved organic carbon trends in
 lakes from Canada's Atlantic Provinces: no recovery from acidification measured after 25 years of
 lake monitoring, Can. J. Fish. Aquat. Sci., 68, 663-674, 2011.

331	Cozzarelli, I. M., Herman, J. S. and Parnell Jr, R. A.: The mobilization of aluminum in a
-----	---

- natural soil system: effects of hydrologic pathways, Water Resour. Res., 23, 859-874, 1987.
- 333 Davies, J., Jenkins, A., Monteith, D. T., Evans, C. D. and Cooper, D. M.: Trends in surface
- 334 water chemistry of acidified UK freshwaters, 1988–2002, Environmental Pollution, 137, 27-39, 2005.
- 335 Dennis, I. F. and Clair, T. A.: The distribution of dissolved aluminum in Atlantic salmon
- 336 (Salmo salar) rivers of Atlantic Canada and its potential effect on aquatic populations, Can. J. Fish.
- 337 Aquat. Sci., 69, 1174-1183, 2012.
- 338 DeWalle, D. R., Swistock, B. R. and Sharpe, W. E.: Episodic flow-duration analysis: a
- 339 method of assessing toxic exposure of brook trout (Salvelinus fontinalis) to episodic increases in
- 340 aluminum, Can. J. Fish. Aquat. Sci., 52, 816-827, 1995.
- 341 Driscoll, C. T. and Schecher, W. D.: The chemistry of aluminum in the environment, Environ.
 342 Geochem. Health, 12, 28-49, 1990.
- Edzwald, J. K. and Van Benschoten, J. E.: Aluminum coagulation of natural organic matter,
 in: Chemical water and wastewater treatment, Springer, 341-359, 1990.
- Erlandsson, M., Cory, N., Köhler, S. and Bishop, K.: Direct and indirect effects of increasing
 dissolved organic carbon levels on pH in lakes recovering from acidification, Journal of Geophysical
 Research: Biogeosciences, 115, 2010.

348	Evans, C. D., Cullen	J. M., Alewell, C., Ko	pácek, J., Marchetto, A.,	Moldan, F., Prechtel, A.,
-----	----------------------	------------------------	---------------------------	---------------------------

- 349 Rogora, M., Veselý, J. and Wright, R.: Recovery from acidification in European surface waters,
- 350 Hydrology and Earth System Sciences Discussions, 5, 283-298, 2001.
- 351 Evans, C. D. and Monteith, D. T.: Chemical trends at lakes and streams in the UK Acid
- 352 Waters Monitoring Network, 1988-2000: Evidence for recent recovery at a national scale, Hydrology
- and Earth System Sciences Discussions, 5, 351-366, 2001.
- 354 Exley, C., Chappell, J. S. and Birchall, J. D.: A mechanism for acute aluminium toxicity in
- 355 fish, J. Theor. Biol., 151, 417-428, 1991.
- Farmer, G. J.: Effects of low environmental pH on Atlantic salmon (*Salmo salar* L.) in Nova
 Scotia, Department of Fisheries and Oceans Canada, 2000.
- 358 Fernandez, I. J., Rustad, L. E., Norton, S. A., Kahl, J. S. and Cosby, B. J.: Experimental
- acidification causes soil base-cation depletion at the Bear Brook Watershed in Maine, Soil Sci. Soc.
- 360 Am. J., 67, 1909-1919, 2003.
- 361 Freedman, B. and Clair, T. A.: Ion mass balances and seasonal fluxes from four acidic
- brownwater streams in Nova Scotia, Can. J. Fish. Aquat. Sci., 44, 538-548, 1987.
- 363 Gensemer, R. W., Gondek, J. C., Rodriquez, P. H., Arbildua, J. J., Stubblefield, W. A.,
- 364 Cardwell, A. S., Santore, R. C., Ryan, A. C., Adams, W. J. and Nordheim, E.: Evaluating the effects
- 365 of pH, hardness, and dissolved organic carbon on the toxicity of aluminum to freshwater aquatic
- 366 organisms under circumneutral conditions, Environmental toxicology and chemistry, 37, 49-60, 2018.

- 367 Gibson, A. J. F., Bowlby, H. D., Hardie, D. C. and O'Reilly, P. T.: Populations on the brink:
- 368 low abundance of Southern Upland Atlantic salmon in Nova Scotia, Canada, N. Am. J. Fish.
- 369 Manage., 31, 733-741, 2011.
- 370 Ginn, B. K., Cumming, B. F. and Smol, J. P.: Assessing pH changes since pre-industrial times
- in 51 low-alkalinity lakes in Nova Scotia, Canada, Can. J. Fish. Aquat. Sci., 64, 1043-1054, 2007.
- 372 Gorham, E., Underwood, J. K., Martini, F. B. and Ogden III, J. G.: Natural and anthropogenic
- 373 causes of lake acidification in Nova Scotia, Nature, 324, 451, 1986.
- 374 Helliweli, S., Batley, G. E., Florence, T. M. and Lumsden, B. C.: Speciation and toxicity of
- aluminium in a model fresh water, Environ. Technol., 4, 141-144, 1983.
- 376 Henriksen, A., Skogheim, O. K. and Rosseland, B. O.: Episodic changes in pH and
- aluminium-speciation kill fish in a Norwegian salmon river, Vatten, 40, 255-260, 1984.
- Hesthagen, T. and Hansen, L. P.: Estimates of the annual loss of Atlantic salmon, Salmo salar
 L., in Norway due to acidification, Aquacult. Res., 22, 85-92, 1991.
- 380 Hesthagen, T., Fiske, P. and Saksgård, R.: Recovery of young brown trout (Salmo trutta) in
- acidified streams: What are the critical values for acid-neutralizing capacity?, Atmos. Environ., 146,
- 382 236-244, 2016.
- 383 Hindar, A.: Recommended liming strategies for salmon rivers in Nova Scotia, Canada, NIVA,
 384 2001.

385

386

387	Howells, G., Dalziel, T., Reader, J. P. and Solbe, J. F.: EIFAC water quality criteria for
388	European freshwater fish: report on aluminium, Chem. Ecol., 4, 117-173, 1990.
389	Jansen, B., Nierop, K. G. and Verstraten, J. M.: Mobility of Fe (II), Fe (III) and Al in acidic
390	forest soils mediated by dissolved organic matter: influence of solution pH and metal/organic carbon
391	ratios, Geoderma, 113, 323-340, 2003.
392	Josephson, D. C., Robinson, J. M., Chiotti, J., Jirka, K. J. and Kraft, C. E.: Chemical and
393	biological recovery from acid deposition within the Honnedaga Lake watershed, New York, USA,
394	Environ. Monit. Assess., 186, 4391-4409, 2014.
395	Kerekes, J., Beauchamp, S., Tordon, R., Tremblay, C. and Pollock, T.: Organic versus
396	anthropogenic acidity in tributaries of the Kejimkujik watersheds in western Nova Scotia, Water Air
397	Soil Pollut., 31, 165-1793, 1986.
398	Keys, K.: Acid Deposition and Base Cation Depletion in Northeastern Forest Soils:
399	a Review with Focus on Nova Scotia Conditions thesis, Dalhousie University, 2015.
400	Kopacek, J., Hejzlar, J. and Porcal, P.: Seasonal patterns in chemistry of tributaries to plesne
401	and certovo lakes in the 1998 hydrological year, Silva Gabreta, 4, 105-116, 2000.

Houle, D., Ouimet, R., Couture, S. and Gagnon, C.: Base cation reservoirs in soil control the

buffering capacity of lakes in forested catchments, Can. J. Fish. Aquat. Sci., 63, 471-474, 2006.

- 402 Kopáček, J., Turek, J., Hejzlar, J., Kaňa, J. and Porcal, P.: Element fluxes in watershed-lake
- 403 ecosystems recovering from acidification: Čertovo Lake, the Bohemian Forest, 2001–2005, Biologia,
- 404 61, S41-S426, 2006.
- 405 Krám, P., Hruška, J., Driscoll, C. T., Johnson, C. E. and Oulehle, F.: Long-term changes in
- 406 aluminum fractions of drainage waters in two forest catchments with contrasting lithology, J. Inorg.
- 407 Biochem., 103, 1465-1472, 2009.
- Kristensen, T., Åtland, Å, Rosten, T., Urke, H. A. and Rosseland, B. O.: Important influentwater quality parameters at freshwater production sites in two salmon producing countries, Aquacult.
 Eng., 41, 53-59, 2009.
- 411 Kroglund, F., Finstad, B., Stefansson, S. O., Nilsen, T. O., Kristensen, T., Rosseland, B. O.,
- Teien, H. C. and Salbu, B.: Exposure to moderate acid water and aluminum reduces Atlantic salmon
 post-smolt survival, Aquaculture, 273, 360-373, 2007.
- Kroglund, F., Rosseland, B. O., Teien, H., Salbu, B., Kristensen, T. and Finstad, B.: Water
 quality limits for Atlantic salmon (Salmo salar L.) exposed to short term reductions in pH and
 increased aluminum simulating episodes, Hydrology and Earth System Sciences Discussions, 4,
 3317-3355, 2007.
- Kroglund, F. and Staurnes, M.: Water quality requirements of smolting Atlantic salmon
 (Salmo salar) in limed acid rivers, Can. J. Fish. Aquat. Sci., 56, 2078-2086, 1999.
- 420 Lacoul, P., Freedman, B. and Clair, T.: Effects of acidification on aquatic biota in Atlantic
 421 Canada, Env. Rev., 19, 429-460, 2011.

422	Lacroix, G. L.: Ecological and physiological responses of Atlantic salmon in acidic organic
423	rivers of Nova Scotia, Canada, Water Air Soil Pollut., 46, 375-386, 1989.
424	Lacroix, G. L. and Townsend, D. R.: Responses of juvenile Atlantic salmon (Salmo salar) to
425	episodic increases in acidity of Nova Scotia rivers, Can. J. Fish. Aquat. Sci., 44, 1475-1484, 1987.
426	Langan, S. J. and Wilson, M. J.: Predicting the regional occurrence of acid surface waters in
427	Scotland using an approach based on geology, soils and land use, Journal of hydrology, 138, 515-528,
428	1992.
429	Lawrence, G.B., Dukett, J.E., Houck, N., Snyder, P. and Capone, C.: Increases in dissolved
430	organic carbon accelerate loss of toxic Al in Adirondack lakes recovering from acidification,
431	Environmental science and technology, 47, 7095-7100, 2013.
432	Lydersen, E.: The solubility and hydrolysis of aqueous aluminium hydroxides in dilute fresh
433	waters at different temperatures, Hydrology Research, 21, 195-204, 1990.
434	McCormick, S. D., Lerner, D. T., Monette, M. Y., Nieves-Puigdoller, K., Kelly, J. T. and
435	Björnsson, B. T.: Taking it with you when you go: how perturbations to the freshwater environment,
436	including temperature, dams, and contaminants, affect marine survival of salmon, in: American
437	Fisheries Society Symposium, 2009.
438	McKnight, D. and Bencala, K. E.: Diel variations in iron chemistry in an acidic stream in the
439	Colorado Rocky Mountains, USA, Arct. Alp. Res., 20, 492-500, 1988.

- 440 Monette, M. Y. and McCormick, S. D.: Impacts of short-term acid and aluminum exposure on
- 441 Atlantic salmon (Salmo salar) physiology: a direct comparison of parr and smolts, Aquatic
- 442 Toxicology, 86, 216-226, 2008.
- Monteith, D. T., Evans, C. D., Henrys, P. A., Simpson, G. L. and Malcolm, I. A.: Trends in
 the hydrochemistry of acid-sensitive surface waters in the UK 1988–2008, Ecol. Ind., 37, 287-303,
 2014.
- 446 Murdoch, P. S. and Stoddard, J. L.: The role of nitrate in the acidification of streams in the
- 447 Catskill Mountains of New York, Water Resour. Res., 28, 2707-2720, 1992.
- Neal, C., Smith, C. J., Walls, J. and Dunn, C. S.: Major, minor and trace element mobility in
 the acidic upland forested catchment of the upper River Severn, Mid Wales, Journal of the Geological
 Society, 143, 635-648, 1986.
- 451 Nilsen, T. O., Ebbesson, L. O., Handeland, S. O., Kroglund, F., Finstad, B., Angotzi, A. R.
- 452 and Stefansson, S. O.: Atlantic salmon (Salmo salar L.) smolts require more than two weeks to
- 453 recover from acidic water and aluminium exposure, Aquatic toxicology, 142, 33-44, 2013.
- 454 Nilsen, T. O., Ebbesson, L. O., Kverneland, O. G., Kroglund, F., Finstad, B. and Stefansson,
- 455 S. O.: Effects of acidic water and aluminum exposure on gill Na , K -ATPase α-subunit isoforms,
- 456 enzyme activity, physiology and return rates in Atlantic salmon (Salmo salar L.), Aquatic Toxicology,

457 97, 250-259, 2010.

Parrish, D. L., Behnke, R. J., Gephard, S. R., McCormick, S. D. and Reeves, G. H.: Why
aren't there more Atlantic salmon (Salmo salar)?, Can. J. Fish. Aquat. Sci., 55, 281-287, 1998.

460	Poléo, A. B.: Aluminium polymerization-a mechanism of acute toxicity of aqueous
461	aluminium to fish, Aquatic toxicology, 31, 347-356, 1995.
462	Regish, A. M., Kelly, J. T., O'Dea, M. F. and McCormick, S. D.: Sensitivity of Na /K -
463	ATPase isoforms to acid and aluminum explains differential effects on Atlantic salmon
464	osmoregulation in fresh water and seawater, Can. J. Fish. Aquat. Sci., 75, 1319-1328, 2018.
465	Rodushkin, I., Moiseenko, T. and Kudravsjeva, L.: Aluminium in the surface waters of the
466	Kola Peninsula, Russia, Sci. Total Environ., 163, 55-59, 1995.
467	Rosseland, B. O., Eldhuset, T. D. and Staurnes, M.: Environmental effects of aluminium,
468	Environ. Geochem. Health, 12, 17-27, 1990.
469	Schlesinger, W. H. and Bernhardt, E. S.: Biogeochemistry: an analysis of global change,
470	Academic press, 2013.
471	Schofield, C. L., Galloway, J. N. and Hendry, G. R.: Surface water chemistry in the ILWAS
472	basins, Water Air Soil Pollut., 26, 403-423, 1985.
473	Schofield, C. L. and Trojnar, J. R.: Aluminum toxicity to brook trout (Salvelinusfontinalis) in
474	acidified waters, in: Polluted rain, Springer, 341-366, 1980.
475	Skjelkvåle, B. L., Stoddard, J. L., Jeffries, D. S., Tørseth, K., Høgåsen, T., Bowman, J.,
476	Mannio, J., Monteith, D. T., Mosello, R. and Rogora, M.: Regional scale evidence for improvements
477	in surface water chemistry 1990–2001, Environmental Pollution, 137, 165-176, 2005.

- 478 Staurnes, M., Hansen, L. P., Fugelli, K. and Haraldstad, Ø: Short-term exposure to acid water
- 479 impairs osmoregulation, seawater tolerance, and subsequent marine survival of smolts of Altantic
- 480 salmon (Salmo salar), Can. J. Fish. Aquat. Sci., 53, 1695-1704, 1996.
- 481 Sterling, S., Rotteveel, L., Hart, K., Macleod, S., Björnerås, C., Heubach, F., Clair, T.,
- 482 Howden, N., Bailey, S., Burns, D., Creed, I., de Wit, H., Driscoll, C., Evans, C., Fernandez, I., Green,
- 483 W., Kortelainen, P., Kritzberg, E., Laudon, H., Lawrence, G., Lehtoranta, J., Malcolm, I., Monteith,
- 484 D., Oulehle, F., Norton, S., Pembrook, H., Räike, A., Riise, G., Rusak, J., Webster, K. and
- 485 Weyhenmeyer, G.: Increasing aluminium in lakes and rivers, In prep.
- 486 Stoddard, J. L., Jeffries, D. S., Lükewille, A., Clair, T. A., Dillon, P. J., Driscoll, C. T.,
- 487 Forsius, M., Johannessen, M., Kahl, J. S. and Kellogg, J. H.: Regional trends in aquatic recovery from
- 488 acidification in North America and Europe, Nature, 401, 575, 1999.
- 489 Strock, K. E., Nelson, S. J., Kahl, J. S., Saros, J. E. and McDowell, W. H.: Decadal trends
- 490 reveal recent acceleration in the rate of recovery from acidification in the northeastern US, Environ.
- 491 Sci. Technol., 48, 4681-4689, 2014.
- 492 Summers, P. W. and Whelpdale, D. M.: Acid precipitation in Canada, Water Air Soil Pollut.,
 493 6, 447-455, 1976.
- 494 Tipping, E.: Acid-sensitive waters of the English Lake District: a steady-state model of
 495 streamwater chemistry in the upper Duddon catchment, Environmental Pollution, 60, 181-208, 1989.
- 496 US EPA: Method 6020A (SW-846): Inductively coupled plasma-mass spectrometry, 1998.

497	US EPA.: "Method 200.8: Determination of Trace Elements in Waters and Wastes by
498	Inductively Coupled Plasma-Mass Spectrometry," Revision 5.4, 1994.
499	Walker, W. J., Cronan, C. S. and Bloom, P. R.: Aluminum solubility in organic soil horizons
500	from northern and southern forested watersheds, Soil Sci. Soc. Am. J., 54, 369-374, 1990.
501	Wang, D., He, Y., Liang, J., Liu, P. and Zhuang, P.: Distribution and source analysis of
502	aluminum in rivers near Xi'an City, China, Environ. Monit. Assess., 185, 1041-1053, 2013.
503	Warby, R. A., Johnson, C. E. and Driscoll, C. T.: Continuing acidification of organic soils
504	across the northeastern USA: 1984–2001, Soil Sci. Soc. Am. J., 73, 274-284, 2009.
505	Warby, R. A., Johnson, C. E. and Driscoll, C. T.: Chemical recovery of surface waters across
506	the northeastern United States from reduced inputs of acidic deposition: 1984-2001, Environ. Sci.
507	Technol., 39, 6548-6554, 2005.
508	Watmough, S. A., Eimers, C. and Baker, S.: Impediments to recovery from acid deposition,
509	Atmos. Environ., 146, 15-27, 2016.
510	Watt, W. D.: A summary of the impact of acid rain on Atlantic salmon (Salmo salar) in
511	Canada, Water Air Soil Pollut., 35, 27-35, 1987.
512	Watt, W. D., Scott, C. D., Zamora, P. J. and White, W. J.: Acid toxicity levels in Nova Scotian
513	rivers have not declined in synchrony with the decline in sulfate levels, Water Air Soil Pollut., 118,
514	203-229, 2000.

515 Wauer, G. and Teien, H.: Risk of acute toxicity for fish during aluminium application	n to
---	------

- 516 hardwater lakes, Sci. Total Environ., 408, 4020-4025, 2010.
- 517 Weyhenmeyer G.A., Hartmann J., Hessen D.O., Kopáček J., Hejzlar J., Jacquet S., Hamilton
- 518 S.K., Verburg P., Leach T.H., Schmid M., Flaim G. Widespread diminishing anthropogenic effects on
- 519 calcium in freshwaters. Scientific reports. 18;9(1), 10450, 2019.
- 520 Whitfield, C. J., Aherne, J., Watmough, S. A., Dillon, P. J. and Clair, T. A.: Recovery from
- 521 acidification in Nova Scotia: temporal trends and critical loads for 20 headwater lakes, Can. J. Fish.
- 522 Aquat. Sci., 63, 1504-1514, 2006.
- 523 Whitfield, C. J., Aherne, J., Dillon, P. J., and Watmough, S. A.: Modelling acidification,
- 524 recovery and target loads for headwater catchments in Nova Scotia, Canada, Hydrol. Earth Syst. Sci.,
- 525 11, 951–963, doi:10.5194/hess-11-951-2007, 2007.
- 526
- 527 Witters, H. E., Van Puymbroeck, S., Vangenechten, J. and Vanderborght, O.: The effect of
- 528 humic substances on the toxicity of aluminium to adult rainbow trout, Oncorhynchus mykiss
- 529 (Walbaum), J. Fish Biol., 37, 43-53, 1990.
- 530
- 531
- 532

- 533 Tables
- Table 1 Study site characteristics. "n" refers to the number of sampling events. Number in brackets after the mean concentration is the standard deviation. One 534
- Al; outlier removed for MR (value: 2 µg·L⁻¹, date: 30 April 2015). pH is calibrated using the method outlined in Appendix D.4. 535

Mean pH	5.1	5.0	5.1	5.1	4.9	5.2	5.3	5.4	5.1	5.0
Mean Ca (ug L ⁻¹)	699 (120)	826 (344)	969 (536)	1292 (286)	836 (272)	759 (126)	739 (230)	746 (166)	621 (275)	750 (568)
Mean Ald (ug L ⁻	195 (54.9)	249 (85.9)	149 (43.4)	319 (99.2)	350 (71.0)	243 (64.8)	224 (68.3)	109 (46.1)	281 (80.4)	411 (117)
$\begin{array}{l} \mbox{Mean}\\ \mbox{DOC}\\ (mgL^{\text{-}l}) \end{array}$	8.6 (2.7)	15.8 (6.1)	8.6 (3.3)	9.8 (4.4)	16.0 (8.3)	13.8 (3.7)	12.8 (3.0)	7.2 (1.9)	10.8 (3.6)	23.1 (5.1)
Mean Ali (ug L ⁻¹)	22.5 (11.7)	20.8 (12.2)	13.5 (12.0)	40.1 (23.2)	48.7 (27.6)	45.3 (26.7)	43.5 (23.5)	15.1 (11.7)	28.2 (11.5)	58.9 (41.7)
Dominant Bedrock Type	Granite	Granite/slate	Slate	Granite	Sandstone/slate	Sandstone/slate	Sandstone/slate	Sandstone/slate	Sandstone/slate	Sandstone/slate
Land use	Natural forest	Natural forest	Natural forest	Natural forest	Natural forest	Natural forest	Natural forest	Natural forest	Natural forest	Natural forest
ц	47	39	15	12	22	22	18	13	5	8
Area (km ²)	292.8	15.8	1.5	0.2	1.3	32.3	36.8	47.1	2.3	1.7
Long	-65.223	-65.048	-65.209	-64.414	-62.690	-62.800	-62.705	-62.611	-62.7153	-62.7127
Lat	44.437	44.462	44.436	44.779	45.021	45.054	45.064	44.952	45.0284	45.0279
Site	Mersey River (MR)	Moose Pit Brook (MPB)	Pine Marten Brook (PMB)	Maria Brook (MB)	Brandon Lake Brook (BLB)	Upstream of West River Lime Doser (ALD)	Upper Killag River (UKR)	Little River (LR)	Keef Brook (KB)	Colwell Creek (CC)

536

- 537 Table 2. Al_i relations with other stream chemistry parameters separated by possible seasons. Dark shading
- 538 represents $r^2 > 0.6$. Medium shading represents $r^2 0.2$ -0.6. Light shading represents $r^2 0.0$ -0.2. Green
- 539 indicates negative relation. Orange indicates positive relation.
- 540

	рН		DOC		Tw		Ald		Ca	
	slope	r ²	slope	r^2	slope	r ²	slope	r^2	slope	r ²
Season 1										
MR	-7.67	0.78	1.78	0.49	-0.26	0.42	0.084	0.67	0.0329	0.50
MPB	8.44	0.0045	2.62	0.71	2.66	0.72	0.13	0.68	0.053	0.59
Season 2										
MR	-53.2	0.27	7.5	0.51	0.72	0.034	0.23	0.52	0.13	0.37
MPB	-19.6	0.22	1.4	0.43	1.43	0.23	0.1	0.42	0.039	0.42
Season 3										
MR	4.57	0.046	0.089	0.0014	0.25	0.088	0.021	0.014	0.006	0.0001
MPB	-39.6	0.56	1.33	0.73	-2.42	0.44	0.086	0.66	0.018	0.49

541

542 Figures

543

545 L^{-1} toxic threshold. For additional site details, refer to Table 1.

546

 $547 \qquad \mbox{Figure 2. Mean Al}_i \mbox{ concentrations between spring 2015 to fall 2018. }$

548

549

551 lines indicate a positive correlation with Al_i, and blue polygons and lines indicate a negative correlation

552 with Al_i. One Al_i outlier removed for MR (value: 2 µg L⁻¹, date: 30 April 2015). Correlation data are listed

in Table A4.

556 MPB. R² values are listed in Table A5. One runoff outlier removed for MR (value: 17.294 m3 s⁻¹, date: 22

557 April 2015). One runoff outlier removed for MPB (value: 34.994 m3 s⁻¹, date: 22 April 2015).

558

554

Appendix A. Tables

Table A1 Ali terminology, speciation methodology, and trends from published studies. Several methods do not measure Ali in situ, which can cause error due to underestimation of Al_i. Al_{nl}=non-labile Al, Al_{tm}=total monomeric Al, Al_{om}=organic monomeric Al, Al_{tr}=total reactive Al, Al_{nm}=non-labile monomeric Al, Aln=monomeric Al. CEC= Cation Exchange Column, ICP-AES= Inductively Coupled Plasma-Atomic Emission Spectroscopy. AWMN= Acid Waters changes in temperature, DOC and pH, which vary during transit to the lab. Increased pH and increased temperature in lab conditions can cause the Monitoring Network.

0					
Al Species	Definition	Analysis Method	Trend	Location	Reference
Ali	Inorganic Al	Colourimetry (Al _r -Al _{nl})	Decreasing Al _i from 1988-2008	AWMN in UK	Monteith et al. (2014)
Al_{im}	Inorganic monomeric Al	Colourimetry (Al _{tm} -Al _{on})	Decreasing Al _i from 2001-2011	New York, USA	Josephson et al. (2014)
Ali	Ionic Al	CEC (Alr-Al _o)	Mean NS Al _i =25.3 μg/L Mean NB Al _i =31.0 μg/L	Atlantic Canada	Dennis and Clair (2012)
Ali	Ionic Al	Colourimetry	Decreasing Al _i in lakes	Norway	Hesthagen et al. (2011)
LAI	Inorganic Al (sum of inorganic and monomeric Al species)	ICP-AES, Flow injection, Pyrocatechol violet, and CEC (Alu- Al _{nl})	15% of LA1 samples were >10 μg/L	Norway	Kristensen et al. (2009)
Al-I	Labile/cationic/inorganic monomeric Al	Colourimetry (Al _{tm} -Al _{nlm})	Decreasing Al-l across the UK	AWMN in UK	Evans & Monteith (2001)
Al _{im}	Labile Al (free and inorganically complexed Al)	Van Benschoten method	Mean Al _{im} of 72 µg/L from 2009- 2010	China	Wang et al. (2013)

Kram et al. (2009)	Strock et al. (2014)	
Czech Republic	Adirondack Strock Mountains, USA (2014)	
Al _i fraction decreased in catchments between 1991 & 2007	Decreasing Al _i from 1990-2010	
Colourimetry and CEC (Al _m -Al _o)	AAS	
Inorganic monomeric	Inorganic Al	
AI_i	Ali	

Table A2 Raw sample data. RL: rising limb of hydrograph, FL: falling limb of hydrograph, and BF: base flow. Air temperature (Ta) data were collected from the

(Climate meteorol	ID: 8202251; ogical tower l	(Climate ID: 8202251; 44°52'52.000" N, 63°30'31.000" W) for CC, KB, ALD, BLB, UKR, and LR. Missing T _a data were replaced with data from another local meteorological tower located one kilometer to the northwest of the MPB site (44.469549, -65.061295).	N, 63°30'3. meter to the	1.000" W) northwest	for CC, K t of the MH	B, ALD, ⁹ B site (4	BLB, UK 4.469549,	R, and LR. -65.06129	Missing 5).	T _a data v	vere rel	placed with o	lata from 2	nother local
Site	Date	Ali ($\mu g L^{-1}$)	Al _o /Ald (%)	Season	$Ala (\mu g L^{-1})$	$Ca (\mu g L^{-1})$	DOC (mg L ⁻¹)	$\frac{SO_4(\mu g}{L^{-1})}$	pH (unit)	$T_w(^{\circ}C)$	$\mathbf{T}_{\mathbf{a}}$	Discharge $(m^3 s^{-1})$	Runoff (mm day ⁻¹)	Hydrograph Stage
ALD	2016-04-29	19	87.7	1	155	591	L	668	4.67	6.8	4			
ALD	2016-05-19	12	94.1		202	800	10.7	1414	5.89		12.0			
ALD	2016-06-03	25	90.7	2	268	722	12.5	639	5.02	16.6	13.2			
ALD	2016-06-16	32	88.3	2	274	674	12.9	578	4.99	13.2	13			
ALD	2016-06-28	28	89.4	2	265	720	12.2	959	5.26	22.1	24.2			
ALD	2016-07-15	37	87	5	285	792	15	761	5.11	20.7	19.6			
ALD	2016-08-05	48	79.9		239	700	19.4	1414	5.98		21.2			
ALD	2016-09-10	48	78.2		220	1000	14.8	2000	5.03		20.8			
ALD	2016-10-02	13	92.3		169	1000	14.4	3000	5.27		11.4			
ALD	2016-11-19	44	82		245	006	14.6	1414	5.03		7.6			
ALD	2017-04-19	27	81.1	1	143	600	10.4	1209	4.55	7.8	3.2			
ALD	2017-05-14	69	61	5	177	600	12.1	923	4.92	13.4	4			
ALD	2017-05-30	37	85.8	5	261	600	11.8	2536	4.77	14.3	12.2			
ALD	2017-06-22	100	59.8	5	249	700	15.2	1414	5.17	22.8	25			

18.5	28.4	21	18.7	7.5	11.0	23.8	-9.1	4	13.5	13	23.9	18.7	21.2	20.8	11.4	7.6	4	9	14.9	24.6
20.6	25.6	21.8	20.7					5.7	10.1	9.8	13.1	14.3					4.2	7.7	8.4	17.3
5.24	4.96	5.14	4.73	5.64	5.13	5.61	5.45	5.03	4.78	4.77	4.67	4.77	5.29	4.87	5.1	4.76				4.8
1414	1414	1125		1414	1414	1414	1414	936	699	1158	1251	723	1414	1414	2000	1414	1927	1550	1795	1414
19.3	15.1	13.2	23.5	8.8	16.1	13.6	10.1	7.2	11.9	13.2	13.6	16.7	26.2	48.3	18.5	17.2	9.6	12.9	11.3	14.9
800	800	700	1000	700	700	800	800	476	770	789	894	887	1000	006	1000	1000	600	800	700	800
315	236	224	439	189	266	317	208	190	336	373	388	443	429	354	335	379	196	264	308	368
7	7	2	7					7	4	4	4	4					4	4	4	4
80.3	89	84.4	82.5	75.7	83.8	62.5	76	89.5	82.1	91.2	93.3	90.5	98.6	77.1	90.1	92.6	79.1	82.6	88.3	70.1
62	26	35	LL	46	43	119	50	20	60	33	26	42	9	81	33	28	41	46	36	110
2017-07-13	2017-08-01	2017-08-23	2017-09-16	2018-05-10	2018-06-07	2018-07-05	2018-11-23	2016-04-29	2016-06-03	2016-06-16	2016-06-28	2016-07-15	2016-08-05	2016-09-10	2016-10-02	2016-11-19	2017-04-19	2017-05-14	2017-05-30	2017-06-22
ALD	BLB																			

BLB	2017-07-13	50	88.3	4	427	006	17.6	1414	4.87	15.8	17
BLB	2017-08-01	37	90.7	4	396	800	17.9	1414	4.7	20.6	29
BLB	2017-08-23	54	85.8	ю	381	1000	17.1	1172	4.94	18.3	21
BLB	2017-09-16	34	91.9	4	420	1000	17.3		4.52	16.6	18.9
BLB	2018-05-10	37	85.5		256	700	8.5	1414	5.16		7.5
BLB	2018-06-07	86	75		344	800	15.7	1414	5.29		11.0
BLB	2018-07-05	83	80.3		421	006	13.8	1414	5.42		23.8
BLB	2018-10-02	104	67.4		319	1600	12.4	1414	5.04		7.7
BLB	2018-11-23	24	93.5		367	70.7	10.5	1414	4.8		-9.1
СС	2016-06-03	32	91.9	4	397	501	15.2	385	4.66	11.2	13.5
CC	2016-06-16	46	88.9	4	413	520	17.7	304	4.71	10.4	12.8
CC	2016-06-28	107	78.9	4	507	537	21	401	4.82	14.8	24.2
CC	2016-07-15	53	6.68	4	524	642	26	208	4.6	14.6	18.7
CC	2016-08-05	140	68.6		446	400	29.3	1414	5.73		21.2
CC	2016-09-10	32	86.9		244	400	22.2	1414	4.72		20.8
CC	2016-10-02	34	85.5		234	006	28.8	1414	4.95		11.4
СС	2016-11-19	27	94.9		527	2100	24.9	1414	6.11		7.6
KB	2016-04-29	14	90.6	2	149	1110	5.7	1061	5.69	8.2	4
KB	2016-06-03	20	92.5	2	267	459	6.6	611	4.89	14.1	13.5
KB	2016-06-16	38	87.7	2	310	515	11.3	852	4.9	12.3	10.8
KB	2016-06-28	28	91.3	7	323	486	11.7	887	5.06	17.8	24.5
KB	2016-07-15	41	88.5	2	356	535	15.6	621	5.03	18.7	18.7

LR	2016-08-05	27	50		54	1100	5.7	1414	6.03		21.2
LR	2016-09-10	б	92.1		38	800	4.4	1414	6.07		20.8
LR	2016-10-02	9	95.2		124	006	10.1	2000	5.76		11.4
LR	2017-04-19	4	96.6	1	116	600	7.1	1416	4.87	9	1.7
LR	2017-05-14	20	84.6	5	130	600	8.1	1213	4.95	12.3	9
LR	2017-05-30	17	89	5	154	600	8.6	1572	5.21	15	12.5
LR	2017-06-22	34	6.69	5	113	700	8.2	1414	5.51	19.6	19
LR	2017-07-13	12	88.7	5	106	600	6.4	1414	5.54	21.8	18
LR	2017-08-01	5	96.9	5	65	600	6.6	1414	5.1	19.6	24.8
LR	2017-08-23	S	88.4	2	43	600	4.1	1371	5.37	21.6	21.3
LR	2017-09-16	S	94.9	5	66	700	6.7	1414	5.01	19.4	15.8
LR	2018-05-10	35	74.1		135	800	6.7	1414	5.54		7.5
LR	2018-06-07	26	84.0		162	006	8.2	1414	5.55		11.0
MB	2016-05-27	30	88.9	7	270	1200	6.8	1278	5.14	9.8	12
MB	2016-06-15	15	94.2	7	260	1590	8.4	1497	5.61	11.2	14.6
MB	2016-06-27	27	90.5	7	284	1610	7.6	1851	5.28	16.3	16.7
MB	2016-07-14	40	86.9	5	305	1780	6.4	1747	5.4	15.5	28.5
MB	2017-04-20	25	89.8	-	246	848	٢	1996	4.86	2.3	4
MB	2017-05-13	48	84.1	1	302	779	7.2	1385	4.76	9.1	17
MB	2017-05-29	40	87.9	7	330	1100	6	1977	4.99	9.1	14.5
MB	2017-06-21	96	81.2	5	510	1480	15.8	551	5.18	13.7	23.3
MB	2017-07-12	46	87.7	5	375	1320	11.5	28968	5.13	15.8	25.9

			11 34.992 RL	49 8.134 FL	76 4.149 BF	36 1.965 RL	23 1.256 RL	15 0.819 BI	10.0	6.933	6.933 1.747	6.933 1.747 1.092	6.933 1.747 1.092 7.533	6.933 1.747 1.092 7.533 1.583	6.933 1.747 1.092 7.533 1.583 0.382	6.933 1.747 1.092 7.533 1.583 0.382 0.273	6.933 1.747 1.092 7.533 1.583 0.382 0.273 0.273	6.933 1.747 1.092 7.533 1.583 0.382 0.382 0.273 0.273	6.933 1.747 1.092 1.583 0.382 0.382 0.373 0.273 0.218	6.933 1.747 1.092 7.533 1.583 0.382 0.382 0.382 0.273 0.273 0.218 0.218	6.933 1.747 1.092 7.533 1.583 0.382 0.382 0.382 0.273 0.273 0.218 0.218 0.218
4.	27.6	23	7.3 6.41	4.5 1.49	14 0.76	7 0.36	12 0.23	21 0.15		8 1.27	-										
15.6 27.4	15.5 27	14.7	7	3.5 4		13.6	10.4	14.1		9.2											
9 5.08	8 4.91	3 5.14	0	2 4.77	4	3 5.18	5.25) 5.39) 5.03											
1 1629	1 828	1 1258	3 1009	4 1272	5 1304	2 958	3 815	4 699		3 639								-			
12.1	21	11	4.3	5.4	6.6	8.2	9.3	10.4		17.3											
1 1470	0 1500	0 1600	77 323	88 379	0 446	8 498	0 621	7 567		0 710											
2 351	2 560	3 280	1 7	1 8	1 120	2 158	2 170	2 177		2 260											
87.7	85.7	89.3	97.1	95.9	95.8	96.8	99.4	97.2		95	95 92.8	95 92.8 88.3	95 92.8 88.3 93.4	95 92.8 88.3 93.4 83.8	95 92.8 88.3 93.4 83.8 92.3	95 92.8 88.3 93.4 83.8 83.8 92.3 92.3	95 92.8 88.3 93.4 83.8 83.8 92.3 92.3	95 92.8 88.3 93.4 92.3 91.5 92.5	95 92.8 88.3 93.4 92.3 91.5 92.5 93.9	95 92.8 88.3 83.8 83.8 92.3 91.5 91.5 93.9 88.2	95 92.8 88.3 93.4 92.3 92.5 92.5 93.9 88.2 88.2
43 8	80 8	30 8	2 9	4 9	5 9	5 9	1 9	5 9		13											
7	~									ч.,	•••										
2017-07-31	2017-08-22	2017-09-17	2015-04-22	2015-04-30	2015-05-06	2015-05-13	2015-05-20	2015-05-27		2015-06-03	2015-06-03 2015-06-10	2015-06-03 2015-06-10 2015-06-17	2015-06-03 2015-06-10 2015-06-17 2015-06-24	2015-06-03 2015-06-10 2015-06-17 2015-06-24 2015-07-02	2015-06-03 2015-06-17 2015-06-17 2015-06-24 2015-07-02 2015-07-08	2015-06-03 2015-06-10 2015-06-17 2015-06-24 2015-07-02 2015-07-08 2015-07-15	2015-06-03 2015-06-10 2015-06-17 2015-06-24 2015-07-02 2015-07-08 2015-07-15 2015-07-22	2015-06-03 2015-06-17 2015-06-24 2015-07-02 2015-07-08 2015-07-15 2015-07-15 2015-07-22 2015-07-29	2015-06-03 2015-06-17 2015-06-24 2015-07-02 2015-07-08 2015-07-15 2015-07-15 2015-07-29 2015-07-29 2015-07-29 2015-07-29 2015-07-29	2015-06-03 2015-06-17 2015-06-24 2015-07-02 2015-07-08 2015-07-15 2015-07-29 2015-07-29 2015-07-29 2015-07-29 2015-08-05 2015-08-12	2015-06-03 2015-06-17 2015-06-24 2015-07-02 2015-07-08 2015-07-15 2015-07-15 2015-07-29 2015-07-29 2015-08-05 2015-08-19 2015-08-19
MB	MB	MB	MPB	MPB	MPB	MPB	MPB	MPB		MPB	MPB MPB	MPB MPB MPB	MPB MPB MPB MPB MPB	MPB MPB MPB MPB MPB	MPB MPB MPB MPB MPB MPB MPB	MPB MPB MPB MPB MPB MPB MPB	MPB MPB MPB MPB MPB MPB MPB MPB	MPB MPB MPB MPB MPB MPB MPB MPB	MPB MPB MPB MPB MPB MPB MPB MPB MPB	MPB MPB MPB MPB MPB MPB MPB MPB MPB	MPB MPB MPB MPB MPB MPB MPB MPB MPB MPB

MPB	2015-09-02	26	87.5	ŝ	208	760	14.7	711	4.9	17.4	21	0.02	0.109	BF
MPB	2015-09-09	18	90.8	ю	196	722	14.5	823	5.2	18.5	20		0	RL
MPB	2015-09-16	20	92	ю	250	1330	13	4375	5.13	16.5	19	0.08	0.437	BF
MPB	2015-09-23	35	88.2	ю	297	1320	20	2598	5	14.3	17	0.02	0.109	BF
MPB	2015-09-30	32	88.1	б	268	1170	18.1	1902	4.87	15.7	19		0	BF
MPB	2015-10-07	48	88.9	б	434	1900	28	2576	4.81	10.3	13	0.15	0.819	BF
MPB	2015-10-14	28	92.8	ŝ	390	1560	24	1963	4.83	12.7	16	0.36	1.965	RL
MPB	2016-04-28	14	90.1	1	141	573	7.1	800	4.9	6.6	4	0.15	0.819	RL
MPB	2016-05-27	20	91.7	2	240	740	14	489	4.79	14.2	12	0.15	0.819	RL
MPB	2016-06-15	14	94.6	2	257	775	15.7	478	4.89	12.7	14.1	0.07	0.382	FL
MPB	2016-06-27	21	92.4	2	275	778	17.2	587	4.93	18	27	0.01	0.055	F
MPB	2016-07-14	16	92.9	2	225	828	15	1447	4.86	15.5	20	0.03	0.164	Н
MPB	2017-04-20	6	94.5	1	163	595	9.4	1625	4.65	5	1		0	
MPB	2017-05-13	11	95.2	1	229	712	11.5	1430	4.54	10.4	17	0.79	4.313	Н
MPB	2017-05-29	10	96.2	1	260	062	13	1567	4.74	10.9	12	0.44	2.402	F
MPB	2017-06-21	46	86.5	1	341	901	17.8	226	4.73	16.8	24.2	0.32	1.747	Н
MPB	2017-07-12	27	93	7	384	1060	22.3	229	4.96	19.5	25.9	0.05	0.273	Н
MPB	2017-07-31	23	92.4	2	303	972	22.8	724	4.65	17.8	27	0.02	0.109	Н
MPB	2017-08-22	40	91.3	2	460	1300	30	255	4.54	16.9	28.4	0.62	3.385	Н
MPB	2017-09-17	40	90.5	3	420	1300	30	301	4.6	17.3	20.1	0.1	0.546	Ъ
MR	2015-04-22	12	90.2	1	122	648	5.9	1321			7.3	58.61	1.837	RL
MR	2015-04-30	2	98	1	102	500	5.6	1189	5	4.2	4.5	33.03	1.454	Н

BF	F	F	Н	RL	RL			BF	BF	BF	BF	RL	F	RL	BF						
•	~	0	10)0	+	~	~	~	-	10	_	10	_	10	0	_	_	~	_	•	~
1.269	1.048	0.912	0.835	0.946	0.934	0.858	1.028	1.018	0.864	0.76	0.701	0.735	0.671	0.686	0.632	0.731	0.681	0.63	0.781	0.789	0.733
22.33	12.05	6.95	4.53	8.42	7.8	4.98	10.58	10.94	5.14	2.9	1.9	2.45	1.46	1.53	0.96	4.47	1.59	0.93	3.2	3.44	2.3
14	٢	12	21	8	10			20	23	18	17	19	19	21	24	16	21	20	19	17	19
	13.3	14.2	15.7	12.7	17.4	19.2	16.6	19.9	23.1	24.5	21.9	21.2	25.2	22	25.3	24.1	21.5	22.3	18.9	18.3	18.6
	5.23	5.19	5.28	5.35	5.33	5.39	5.3	5.25	5.37	5.46	5.49	5.54	5.65	5.43	5.48	5.33	5.3	5.47	5.2	5.34	5.05
1112	1117	1101	1161	1069	1220	1175	968	897	972	959	1011	1146	1077	1094	1097	1179	1168	776	1108	006	911
4.8	5.5	5.3	5.8	6.6	6.2	6.1	8.8	8.1	7.3	7.9	Г	T.T	7.5	6.5	7.4	6	12.3	10.2	12.5	11.3	9.6
527	517	574	548	629	590	575	647	602	713	593	652	611	670	629	641	808	859	751	828	675	662
110	122	117	118	148	151	142	188	196	177	177	177	163	167	145	176	261	271	229	261	246	225
1	1	1	1	7	5			5	7	7	7	7	7	5	7	5	б	б	б	б	б
91.8	91.8	92.3	94.1	89.2	74.2	83.1	86.2	82.1	80.2	87	90.4	85.3	82	91	86.9	83.9	87.5	90.4	87	94.7	86.2
6	10	6	7	16	39	24	26	35	35	23	17	24	30	13	23	42	34	22	34	13	31
2015-05-06	2015-05-13	2015-05-20	2015-05-27	2015-06-03	2015-06-10	2015-06-17	2015-06-24	2015-07-02	2015-07-08	2015-07-15	2015-07-22	2015-07-29	2015-08-05	2015-08-12	2015-08-19	2015-08-26	2015-09-02	2015-09-09	2015-09-16	2015-09-23	2015-09-30
MR																					

	RL	BF	FL	RL	Я	FL	RL	BF	RL	Я	Я	FL	Я	BF	FL	FL	FL	FL	Ч	FL	FL
0.869	0.905	0.855	0.814	0.947	1.183	0.998	0.926	1.2	1.248	0.892	0.81	0.773	0.649	0.635		1.28	0.905	0.881	0.813	0.665	0.878
5.16	6.26	4.83	3.98	8.1	17.96	9.62	7.75	18.21	19.81	5.85	3.11	2.05	1.04	0.68	13	20.5	7.08	5.42	3.55	1.37	5.26
	16	5	3	L	9	-20	ς	9-	2	4	12	14.4	24	16	1	13	10.4	20.2	23.9	24.9	25.5
13	14.1	8.9	6.9	7.9	3.2		0.2	0.8	4.2	10.2	16.8	15.7	22.7	15	8.5	13.4	13.9	19.4	22.9	22.5	20.4
4.87	4.87	4.91	4.95	4.7	4.73		4.62	4.59	4.65	4.75	4.98	5.1	5.24	5.42	4.56	4.7	4.87	5.17	5.15	5.13	4.92
686	1166	890	1153	967	1139	1245	1290	1316	1060	937	922	1217	1263	1697	1625	1437	1774	458	982	1116	861
10.7	11.4	6	10	14.4	12	11	10.1	7.9	6.1	9	6.8	6.7	6.8	6.4	5.3	10.5	6	10.1	10	9.88	15
794	824	735	837	945	946	880	875	651	606	572	635	595	624	654	692	683	810	752	729	766	910
241	257	237	253	286	262	270	217	175	146	145	156	155	153	134	173	197	230	244	254	215	310
	3	33	33	33	3	3	33	1	1	1	1	1	2	2	3	33	3	2	2	2	ŝ
91.3	90.7	89.5	91.3	91.3	92.4	88.9	91.7	92	91.1	91	92.3	92.3	89.5	94	87.3	86.3	91.3	74.2	87.4	76.7	93.5
21	24	25	22	25	20	30	18	14	13	13	12	12	16	8	22	27	20	63	32	50	20
2015-10-07	2015-10-14	2015-10-21	2015-10-28	2015-11-04	2015-12-02	2016-01-05	2016-02-02	2016-02-23	2016-03-29	2016-04-28	2016-05-27	2016-06-15	2016-06-27	2016-07-14	2017-04-20	2017-05-13	2017-05-29	2017-06-21	2017-07-12	2017-07-31	2017-08-22
MR																					

0.715																					
1.98																					
17.3	21	8	4	12	14.2	24	12	7	16	10.8	21.4	24.6	25.6	26.9	17.8	12.0	21.2	20.8	11.4	7.6	3.4
20.6	12.6	12.2	8.2	12.7	10.9	14	15	8.5	9.8	13.9	15.5	16	13.8	16.4	16						7.3
4.84	5.62	5.28	5.25	4.93	5.14	5.35	5.4	4.78	4.69	5.03	4.98	5.21	4.99	4.85	4.7	5.83	5.56	5.58	5.77	4.89	
817	845	1042	1244	691	1229	3167	5652	2234	1328	2405	289	1428	2746	571	640	1414.2	1414.2	1414.2	1414.2	2000	1292
15	7.2	8.8	3.6	8	8.1	5.4	6.9	5.3	6.2	L	11.1	10.7	13	13	15	10.4	15.1	12.1	13.8	15.1	9.5
890	~			_	~	_		_	-	C	10	0	0	0	0		_	~	_		C
õ	742	586	675	006	1150	1570	1770	71	71	730	955	1580	1780	960	066	700	700	100	906	1100	500
250 8	128 742	138 586	93 675	160 900	151 1150	82 157(96 1770	114 7	139 7	160 730	222 95:	178 1580	148 178	220 96	200 99	203 700	157 700	158 100	182 900	262 1100	137 500
250	128	138	93	160	151	82	96			160	222	178	148	220	200						137
3 250	2 128	2 138	2 93	2 160	2 151	2 82	2 96	1 114	1 139	2 160	2 222	2 178	2 148	3 220	3 200	203	157	158	182	262	3 137
92 3 250	98.4 2 128	95.7 2 138	93.6 2 93	78.1 2 160	96.7 2 151	94.3 2 82	89.3 2 96	1 114	92.1 1 139	93.8 2 160	85.6 2 222	80.3 2 178	2 148	90.9 3 220	90 3 200	89.7 203	88.5 157	89.9 158	91.8 182	84.4 262	72.3 3 137

9	12.5	24.2	19	29.1	21.1	19.2	7.5	11.0	23.8	<i>T.T</i>	-9.1
12.9	15.2	23.4	22.3	25.6	21.8	20.8					
		5.22	5.21	5.29	5.31	4.77	5.31	5.34	5.46	5.78	4.81
1049	1115	1414	1414	1414	889		1414.2	1414.2	1414.2	1414.2	1414.2
12.6	9.8	12.1	17.6	15	12.8	20.6	8.2	12.9	12.2	10.5	10.8
009	600	800	800	800	700	1000	600	700	800	1100	800
187	221	203	322	239	215	422	169	221	294	207	227
7	7	7	7	2	2	2					
87.2	83.3	67.5	85.4	89.1	65.6	82	78.1	73.3	66.3	77.3	81.1
24	37	99	47	26	74	76	37	59	66	47	43
2017-05-14	2017-05-30	2017-06-22	2017-07-13	2017-08-01	2017-08-23	2017-09-16	2018-05-10	2018-06-07	2018-07-05	2018-10-02	2018-11-23
UKR											

		Correlation with	Significance
Variable	Unit	Ali/Ald (R ²)	(p-value)
AI_d	μg L ⁻¹	0.007	0.247
Ca	$\mu g \ L^{-1}$	0.001	0.676
DOC	${ m mg}{ m L}^{-1}$	0.007	0.247
Hq	unit	0.077	0.000
Water Temp.	°C	0.114	0.000
ţ	$\mu g \ L^{-1}$	0.003	0.537
$NO3^{-}$	$\mu g \ L^{-1}$	0.002	0.624
$SO4^{2-}$	$\mu g \ L^{-1}$	0.000	0.952

Site	Variable Ald Ca	Unit µg L ⁻¹	Slope	(p-value)
ALD		µg L⁻¹		(p value)
ALD	Са		0.29	0.044
ALD		µg L⁻¹	0.22	0.143
ALD	DOC	mg L ^{−1}	0.36	0.013
	рН	unit	0.19	0.190
	Water Temp.	°C	0.32	0.093
	F ⁺	µg L⁻¹	0.182	0.533
	NO ₃ -	µg L⁻¹	0.600	0.142
	SO4 ²⁻	µg L⁻¹	-0.037	0.876
	Ald	µg L⁻¹	0.03	0.852
	Ca	µg L⁻¹	0.17	0.238
	DOC	mg L ^{−1}	0.08	0.575
	рН	unit	0.07	0.622
BLB	Water Temp.	°C	0.35	0.099
	F⁺	µg L⁻¹	-0.036	0.901
	NO ₃ -	µg L⁻¹	-0.109	0.708
	SO42-	µg L⁻¹	-0.184	0.468
			0.101	0.100
	Ald	µg L⁻¹	0.11	0.708
	Ca	µg L⁻¹	-0.22	0.451
	DOC	mg L ^{−1}	0.25	0.383
СС	рН	unit	-0.04	0.901
66	Water Temp.	°C	0.67	0.174
	F+	µg L⁻¹		
	NO ₃ -	µg L ^{−1}		
	SO42-	µg L ^{−1}		
	Ald	µg L ^{−1}	0.800	0.050
	Ca	µg L ^{−1}	0.200	0.624
	DOC	mg L ^{−1}	0.800	0.050
KB	pН	unit	-0.200	0.624
	Water Temp.	°C	0.600	0.142
	F+	µg L⁻¹	0.800	0.050

Table A4 Kendal-tau correlation and significance ($\alpha = 0.05$) between Al_i and other water chemistry parameters for each study site. One Al_i outlier removed for MR calculations (value: 2 µg L⁻¹, date: 30 April 2015).

	SO42-	µg L⁻¹	-0.400	0.327
	Ald	µg L⁻¹	0.37	0.047
	Са	µg L⁻¹	0.24	0.226
	DOC	mg L ^{−1}	0.25	0.189
	рН	unit	0.19	0.319
LR MB	Water Temp.	°C	0.02	0.937
	AldHCaHCaHDOCrpHHWater Temp.HSO42-HAldHCaHDOCrpHHCaHDOCrpHHWater Temp.HSO42-HNO3 ⁻¹ HSO42-HNO3 ⁻¹ HSO42-H	µg L⁻¹		
	NO ₃ -	µg L⁻¹	-0.333	0.348
	SO ₄ ²⁻	µg L⁻¹	0.37 0.24 0.25 0.19 0.02	0.801
	Ald	µg L⁻¹	0.739	0.001
	Са	µg L⁻¹	0.37 0.24 0.25 0.19 0.02 -0.333 0.105 0.739 -0.662 0.400 -0.279 0.125 -0.028 -0.182 -0.463 0.550 0.580 0.574 -0.169 0.280 -0.232 0.190 -0.232 0.190 -0.206 0.317 0.382 0.097 0.285 -0.108 0.139 0.086 -0.127	0.783
	DOC	mg L ^{−1}		0.073
MD	рН	unit		0.214
IVIB	Water Temp.	μ g L ⁻¹ 0.37 μ g L ⁻¹ 0.24 μ g L ⁻¹ 0.25 unit 0.19 μ g L ⁻¹ 0.02 μ g L ⁻¹ -0.333 $a^{2^{-}}$ μ g L ⁻¹ 0.105 μ g L ⁻¹ 0.105 μ g L ⁻¹ 0.739 μ g L ⁻¹ 0.400 μ g L ⁻¹ 0.5279 μ g L ⁻¹ -0.028 μ g L ⁻¹ -0.028 μ g L ⁻¹ 0.550 μ g L ⁻¹ 0.550 μ g L ⁻¹ 0.580 μ g L ⁻¹ 0.580 μ g L ⁻¹ 0.580 μ g L ⁻¹ 0.5232 μ g L ⁻¹ 0.232 μ g L ⁻¹ 0.232 μ g L ⁻¹ 0.239 μ g L ⁻¹ 0.317 μ g L ⁻¹ 0.317 μ g L ⁻¹ 0.382 μ g L ⁻¹ 0.382 μ g L ⁻¹ 0.108 μ g L ⁻¹ <td>0.580</td>	0.580	
	F+	µg L⁻¹	-0.028	0.917
	NO ₃ -	µg L⁻¹	-0.182	0.533
	SO4 ²⁻	µg L⁻¹	-0.463	0.050
МРВ	Ald	µg L⁻¹	0.550	0.000
	Са	µg L⁻¹	0.580	0.000
	DOC	mg L ^{−1}	0.574	0.000
	рН	unit	-0.169	0.146
	Water Temp.	°C	0.280	0.016
	Runoff	µg L ⁻¹ 0.24 mg L ⁻¹ 0.25 unit 0.19 °C 0.02 µg L ⁻¹ -0.333 µg L ⁻¹ 0.105 µg L ⁻¹ 0.739 µg L ⁻¹ 0.400 µg L ⁻¹ 0.402 µg L ⁻¹ 0.527 µg L ⁻¹ 0.580 µg L ⁻¹ 0.574 µg L ⁻¹ 0.574 µg L ⁻¹ 0.232 µg L ⁻¹ 0.206 µg L ⁻¹ 0.206 µg L ⁻¹ 0.317 µg L ⁻¹ 0.382 µg L ⁻¹ 0.208 µm day ⁻¹ 0.108 µg L ⁻¹ 0.317 µg L ⁻¹ 0.108	0.042	
	F+	µg L⁻¹	0.239	0.042
AI Ca DC PF W F+ NC SC AI Ca DC PF NC SC AI Ca DC PF NC SC AI Ca DC PF NC SC AI Ca DC PF NC SC AI Ca DC PF NC SC AI Ca DC PF NC SC AI Ca DC PF NC SC AI Ca DC PF NC SC AI Ca DC PF NC SC Ca DC PF NC SC Ca DC PF NC SC Ca DC PF NC SC Ca DC PF NC SC Ca DC PF NC SC Ca DC PF NC SC Ca DC PF NC SC Ca DC PF NC SC Ca DC PF NC SC Ca DC PF NC SC Ca DC PF NC SC Ca DC PF NC SC Ca DC PF NC SC Ca DC PF NC SC Ca DC PF NC SC Ca DC PF NC SC Ca DC PF NC SC Ca PF NC SC SC Ca PF NC SC SC SC SC SC SC SC SC SC S	NO ₃ -	µg L⁻¹	0.190	0.160
	SO4 ²⁻	µg L⁻¹	 0.37 0.24 0.25 0.19 0.02 -0.333 0.105 0.739 -0.062 0.400 -0.279 0.125 -0.028 -0.182 -0.463 0.550 0.580 0.574 -0.169 0.280 (⁷¹ -0.232 0.239 0.190 -0.206 0.459 0.317 0.382 0.097 0.285 (⁷¹ -0.108 0.139 0.086 -0.127 	0.067
	Ald	µg L⁻¹	0.459	0.000
	Са	µg L⁻¹	0.317	0.002
	DOC	mg L ^{−1}	0.382	0.000
	рН	unit	0.097	0.362
MR	Water Temp.	°C	0.285	0.007
МРВ	RunOff	mm day ⁻¹	-0.108	0.291
	F+	µg L⁻¹	0.139	0.188
	NO ₃ -	µg L⁻¹	0.086	0.450
	SO4 ²⁻	µg L⁻¹	-0.127	0.215
PMB	Ald	µg L⁻¹	0.46	0.019

	Са	µg L ^{−1}	0.01	0.960
	DOC	mg L ^{−1}	0.21	0.295
	рН	unit	-0.23	0.232
	Water Temp.	°C	0.36	0.065
	F+	µg L⁻¹	-0.063	0.782
	NO ₃ -	µg L⁻¹	0.276	0.444
	SO4 ²⁻	µg L⁻¹	-0.293	0.135
	Ald	µg L⁻¹	0.34	0.071
	Са	C mg L ⁻¹ 0.21 unit -0.23 unit -0.36 $\mu g L^{-1}$ -0.063 $\mu g L^{-1}$ 0.276 μ^{2^2} $\mu g L^{-1}$ 0.293 I $\mu g L^{-1}$ 0.34 $\mu g L^{-1}$ 0.38 C mg L ⁻¹ 0.32 unit 0.35 unit 0.35 unit 0.14 $\mu g L^{-1}$ 0.14 $\mu g L^{-1}$ $\mu g L^{-1}$	0.053	
	DOC		0.086	
	рН		0.063	
UKR	Water Temp.	°C	0.14	0.621
	F+	µg L⁻¹		
	NO ₃ -	µg L ^{−1}		
	SO4 ²⁻	µg L⁻¹	-0.600	0.142

Site	Season	Season Dates	Relationship	R ²
MR	S1	April-May	Al _i -pH	0.78131
MR	S 2	June-Aug	Al _i -pH	0.27845
MR	S 3	Sept-Feb	Al _i -pH	0.04551
MR	S 1	April-May	Al _i -DOC	0.48879
MR	S2	June-Aug	Al _i -DOC	0.51343
MR	S 3	Sept-Feb	Al _i -DOC	0.0014
MR	S 1	April-May	Al_i - T_w	0.42004
MR	S2	June-Aug	Al_i - T_w	0.03442
MR	S 3	Sept-Feb	Al_i - T_w	0.08795
MR	S 1	April-May	Al _i -Al _d	0.66782
MR	S2	June-Aug	Al _i -Al _d	0.52313
MR	S 3	Sept-Feb	Al _i -Al _d	0.0141
MR	S 1	April-May	Al _i -Ca	0.50399
MR	S2	June-Aug	Al _i -Ca	0.37339
MR	S 3	Sept-Feb	Al _i -Ca	0.00009
MR	S 1	April-May	Al _i -Ca/Al _d	0.41377
MR	S2	June-Aug	Al _i -Ca/Al _d	0.32486
MR	S 3	Sept-Feb	Al _i -Ca/Al _d	0.0382
MR	S 1	April-May	Al _i -Q	0.0374
MR	S2	June-Aug	Al _i -Q	0.0703
MR	S 3	Sept-Feb	Al _i -Q	0.0063

Table A5 R^2 values for scatterplots of water chemistry relationships shown in Figure 3

MR	S 1	April-May	Al _d -Ca	0.55308
MR	S 2	June-Aug	Al _d -Ca	0.63892
MR	S 3	Sept-Feb	Al _d -Ca	0.5074
MPB	S 1	April-June	Al _i -pH	0.00447
MPB	S2	July-Aug	Al _i -pH	0.21629
MPB	S 3	Sept-Oct	Al _i -pH	0.56
MPB	S 1	April-June	Al _i -DOC	0.70785
MPB	S2	July-Aug	Al _i -DOC	0.43036
MPB	S 3	Sept-Oct	Al _i -DOC	0.72722
MPB	S 1	April-June	Al_i - T_w	0.72067
MPB	S2	July-Aug	Al_i - T_w	0.2356
MPB	S 3	Sept-Oct	Al_i - T_w	0.4353
MPB	S 1	April-June	Al _i -Al _d	0.67571
MPB	S2	July-Aug	Al _i -Al _d	0.4225
MPB	S 3	Sept-Oct	Al _i -Al _d	0.65683
MPB	S 1	April-June	Al _i -Ca	0.59175
MPB	S2	July-Aug	Al _i -Ca	0.4214
MPB	S 3	Sept-Oct	Al _i -Ca	0.49111
MPB	S 1	April-June	Al _i -Ca/Al _d	0.51142
MPB	S2	July-Aug	Al _i -Ca/Al _d	0.03067
MPB	S 3	Sept-Oct	Al _i -Ca/Al _d	0.02961
MPB	S 1	April-June	Al _i -Q	0.1734
MPB	S2	July-Aug	Al _i -Q	0.0039
MPB	S 3	Sept-Oct	Al _i -Q	0.0004
MPB	S 1	April-June	Al _d -Ca	0.96289
MPB	S2	July-Aug	Al _d -Ca	0.7685

MPB S3 Sept-Oct Al _d -Ca 0.72	173
--	-----

Chemistry		Value			
Parameter	Units	HERC	Maxxam	AGAT	
рН	μg L ⁻¹	n/a	n/a	n/a	
DOC	mg L ⁻¹	n/a	0.50	n/a	
TOC	mg L ⁻¹	n/a	n/a	0.5	
SO_4	μg L ^{- 1}	10.00	n/a	2000	
Al _d	μg L ^{- 1}	n/a	5.00	5	
Alt	μg L ^{- 1}	n/a	5.00	5	
Al _o	μg L ^{- 1}	n/a	5.00	5	
Ca _t	μg L ^{- 1}	n/a	100 µg L-1	0.1 mg L ⁻¹	
Ca _d	μg L ⁻¹	n/a	100	100	

Table A6 Laboratory detection limit comparison.

Appendix B. Figures

Figure B1 Timeseries of Al_i concentration between 22 April 2015 and 23 November 2018.

Figure B2 Time series of DOC concentration between 22 April 2015 and 23 November 2018

Figure B3 Time series of Al_d concentration between 22 April 2015 and 23 November 2018.

Figure B6 Time series of percentage Al_d comprised of Al_o for MPB, compared to absolute value of Al_i in ug L^{-1} .

Figure B7 Time series of percentage Al_d comprised of Al_o for MB, compared to absolute value of Al_i in ug L^{-1} .

Figure B8 Time series of percentage Al_d comprised of Al_o for LR, compared to absolute value of Al_i in ug L⁻¹.

Figure B9 Time series of percentage Al_d comprised of Al_o for UKR, compared to absolute value of Al_i in ug L^{-1} .

Figure B10 Time series of percentage Al_d comprised of Al_o for BLB, compared to absolute value of Al_i in ug L⁻¹.

Figure B11 Time series of percentage Al_d comprised of Al_o for ALD, compared to absolute value of Al_i in ug L^{-1} .

Figure B12 Time series of percentage Al_d comprised of Al_o for KB, compared to absolute value of Al_i in ug L⁻¹.

Figure B13 Time series of percentage Al_d comprised of Al_o for CC, compared to absolute value of Al_i in ug L^{-1}

Figure B14 Least-squares linear regression of Al_i versus Al_d for each study site. One Al_i outlier removed for MR (value: 2 µg L-1, date: 30 April 2015).

Figure B15 Least-squares linear regression of Al_i versus Ca for each study site. One Al_i outlier removed for MR (value: 2 µg L-1, date: 30 April 2015). One Ca outlier for KB removed (value: 1110 µg L-1, date: 29 April 2016).

Figure B16 Least-squares linear regression of Al_i versus DOC for each study site. One Al_i outlier removed for MR (value: 2 μ g L-1, date: 30 April 2015).

Figure B17 Least-squares linear regression of Al_i versus pH for each study site. One Al_i outlier removed for MR (value: 2 µg L-1, date: 30 April 2015).

Figure B18 Least-squares linear regression of Al_i versus SO_4^{2-} for each study site. One Al_i outlier removed for MR (value: 2 µg L-1, date: 30 April 2015).

Figure B19 Least-squares linear regression of Al_i versus T_w for each study site. One Al_i outlier removed for MR (value: 2 μ g L-1, date: 30 April 2015).

Figure B20 Least-squares linear regression of Al_i versus runoff for each study site. One Al_i outlier removed for MR (value: 2 µg L-1, date: 30 April 2015). One runoff outlier for MR removed (value: 17.294 mm day-1, date: 22 April 2015), and one runoff outlier for MPB removed (value: 34.994 mm day-1, date: 22 April 2015).

Appendix C. Scripts

C.1. Linear regression """Linear regression calculation script :author: Lobke Rotteveel :email: lobke.rotteveel@dal.ca

Import modules from scipy import stats import pandas as pd import csv

Import data
df = pd.read_csv('Input.csv')

```
Ali = group['Ali']
          for i in chem_groups:
            pair = {'i':i,'Ali':Ali}
            pair = pd.DataFrame(pair)
            pair = pair.dropna()
            if not pair.empty:
               ken_tau = stats.kendalltau(pair['i'], pair['Ali'])
               slope = stats.linregress(pair['i'], pair['Ali'])
               result_row = [name, i.name, ken_tau.correlation, ken_tau.pvalue, slope.slope,
slope.stderr]
               results.append(result_row)
       with open('LinearRegression Out.csv', 'w') as f:
          writer = csv.writer(f)
          writer.writerows(results)
       C.2. Laboratory comparison
       """Laboratory result comparison script
       :author: Lobke Rotteveel
       :email: lobke.rotteveel@dal.ca
```


.....

Import modules import pandas as pd import numpy as np import scipy as sp from scipy import stats import warnings warnings.simplefilter('ignore', np.RankWarning) # Importing data df = pd.read_csv('SampDat_CompareInput_LimSur_171105_LR.csv', ',', header=0) #print (df.head(n=5)) # Run comparisson with open('SampData_Compare_LimSur.txt', 'w') as f: x = df filter(regex='B_*') columns

x = df.filter(regex='B_.*').columns y = df.filter(regex='A_.*').columns

for x_col, y_col in zip(x,y): Sig = sp.stats.wilcoxon(df[x_col],df[y_col]) f.write('x: { }, y: { }, sig:{ }\n'.format(x_col, y_col, Sig))

Appendix D. Additional methods

D.1 Laboratory analysis methods

Samples were analyzed at Maxxam Analytics Laboratory, Health and Environmental Research Centre (HERC), and AGAT Laboratories. Samples from MR, MPB, PMB, MB, KB, and CC were analyzed at Maxxam and HERC labs only. Samples from BLB, ALD, UKR, and LR were analyzed at all three labs.

D1.1 Maxxam Laboratory

The protocol at Maxxam Laboratory in Bedford, NS, adheres to methods approved by the United States Environmental Protection Agency (US EPA) for identifying trace elements in water (US EPA, 1994) and analyzing samples using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) (US EPA, 1998). Cations and anions were analyzed using ICP-MS, while a Continuous Flow Analyzer was used to measure DOC. pH was measured using a standard hydrogen electrode and reference electrode.

D1.2 HERC Laboratory

 SO_4^{2-} samples were analyzed at HERC Laboratory in Halifax, NS, due to lower detection limits at the Maxxam laboratory. Once delivered to the laboratory, samples were filtered using a 0.45 μ m glass fiber filter and analyzed using an Ion-Chromatography System (ICS) 5000 Dionex detector.

D1.3 AGAT Laboratory

Samples collected in the West River, Sheet Harbour area (UKR, ALD, LR, BLB, KB, CC) were analyzed at the AGAT laboratory in Dartmouth, NS. This laboratory holds the

37

9001:2015 and 17025:2005 International Organization for Standardization accreditations. Cation samples were analyzed using ICP-MS, laboratory pH was measured using a standard hydrogen electrode and reference electrode, and SO_4^{2-} and anions were measured using ICS. Samples analyzed at AGAT were analyzed for total organic carbon (TOC) as opposed to DOC and were analyzed using Infrared Combustion (IR Combustion).

D.2 Data quality assurance and control

Blanks were used to assess contamination during the Al_o extraction procedure. Blanks were collected on 10% of samples, taken on arbitrary sampling events. Triple deionized water was collected before passing through filter and column ("Blank Before"), and after ("Blank After"). The triple-deionized water had traces of chemicals below the laboratory detection limits, providing "Not Detectable" results for the Blank Before sample. If chemicals were detected in the Blank After sample, this would have indicated leaching of chemicals from the column.

Duplicates were collected and analyzed for 10% of the samples; on arbitrarily selected sampling events, Al_o and Al_{filtered} or Al_{unfiltered}, were analyzed twice, independently, by Maxxam laboratory. All laboratories also conducted additional duplicate, blank, reference material, and matrix spike testing, in addition to instrument calibration in adherence to industry standards for quality control and assurance.

To verify that sample analysis results from the Maxxam/HERC laboratory combination were comparable to AGAT, three sets of duplicate samples were collected for ALD, BLB, UKR, and LR (19 April 2017, 14 May 2017, and 30 May 2017) and analyzed by both laboratories. Laboratory results were compared using Wilcoxon Rank Sum statistical test in Python 3.6.5 using the SciPy Stats module (version 0.19) (Appendix C.2). Results indicated a significant difference in pH values between laboratories (T = 1, p = 0.04), therefore, statistical analysis on

pH data was conducted on the calibrated YSI Pro Plus sonde field data. Al_o, Al_{filtered}, and Al_{unfiltered} results were found to be comparable between laboratories (T = 8.5, p = 0.674; T = 5.0, p = 0.249; and T = 8.0, p = 0.600, respectively). After adjusting for detection limits (Table A6), Ca results were also found to be comparable between laboratories (T = 4.0, p = 0.173). However, due to the large difference in SO4²⁻ detection limits between HERC and AGAT (10 µg L⁻¹ and 2 mg L⁻¹, respectively), results for SO4²⁻ are not comparable between laboratories. Lastly, organic carbon analyzed at Maxxam was analyzed for DOC, while AGAT analyzed for TOC, therefore these results cannot be compared. For dates where duplicate data is present, AGAT data was used to maintain data source consistency, apart from SO4²⁻ data, for which HERC data was used due to superior detection limits. Analysis for BLB and ALD transitioned from Maxxam to AGAT 19 April 2017 and consequently DOC is approximated as TOC for these two sites after this date.

The YSI Pro Plus sonde was calibrated within 36 hours of in-stream data collection. D.3 Toxic thresholds of Al_i

Identified toxic thresholds of Al_i for *Salmo salar* vary in the literature. Based on toxicological and geochemical studies on Al and *Salmo salar*, the EIFAC suggested an Al_i toxic threshold of 15 ug L⁻¹ for Atlantic salmon in freshwaters for pH between 5.0 and 6.0, and 30 ug L⁻¹ in pH <5 (Howells et al., 1990). The lower threshold at higher pH is to account for the increased fraction in the Al(OH)₂⁺ species. At pH > 6, the toxic effects of Al_i to *Salmo salar* are considered negligible, and toxic effects are dominated by other dissolved and precipitated forms (Gensemer et al., 2018), due to the decreased solubility of Al at pH > 6 (Dennis and Clair 2012). However, in colder rivers, the pH-toxicity threshold may be higher, closer to pH 6.5 (Lydersen,

1990). For the purposes of this study, we use the toxic threshold of Al_i at 15 ug L⁻¹, as the

majority of our pH observations were greater than or equal to 5.0 (Table A2).

D.4 Calibration of pH measurements

In situ pH measurements were taken using a YSI Pro Plus sonde and confirmed with a YSI Ecosense pH Pen. It was found that measurements taken with the YSI Pro Plus sonde deviated from the YSI Ecosense Pen, which is known to measure pH accurately (0.47 ± 0.44 pH units below in-stream pH as measured by YSI Ecosense Pen). Therefore, a calibration curve was created based on simultaneous side-by-side measurements of both instruments (n = 69 pairs) and the in situ pH data were adjusted accordingly (Eq. 1).

$$YSI \ Ecosense \ Pen \ pH = 0.595(Pro \ Plus \ pH) + 2.3868$$
(1)